K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2016

bạn vẽ hình nha.

a) tg AFC và tg AEB có :

 góc A chung

góc AEB = góc AFC (=90 do) 

=> tg AFC ~tg AEB (g.g)

=>\(\frac{AF}{AE}=\frac{AC}{AB}\)   =>AB.AF=AE.AC
b) ta có AB.AF=AE.AC => \(\frac{AF}{AC}=\frac{AE}{AB}\)

tg AEF và tg ABC có
góc A chung
\(\frac{AF}{AC}=\frac{AE}{AB}\)

=> tg AEF ~tg ABC (c.g.c)

c) từ H vẽ HI vuông góc vs BC tại I
    tg BHI và tg BCE có:

      góc HBC chung

      góc BHI= góc BEC

=>tg BHI ~ tg BCE (g.g)

=>\(\frac{BH}{BC}=\frac{BI}{BE}\)  => BH.BE=BC.BI (1)

tg CHI và tg CBF có:

góc FCB chung

góc HIC= góc BFC

=> tg CHI ~ tg CBF(g.g)

=>\(\frac{CH}{CB}=\frac{CI}{CF}\) => CH.CF=BC.CI (2)

từ (1) và (2) , cộng vế theo vế, ta được
BH.BE+CH.CF=BC.BI+BC.CI

=>BH.BE+CH.CF=BC(BI+CI)
=>BH.BE+CH.CF=\(BC^2\)

21 tháng 4 2018

Diệu Nguyển, bạn vẽ giùm mk hình đc k??

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

góc BAE chung

Do đó: ΔABE\(\sim\)ΔACF

Suy ra: AB/AC=AE/AF
hay \(AB\cdot AF=AC\cdot AE\)

b: Xét ΔAFE và ΔACB có 

AF/AC=AE/AB

góc FAE chung

Do đó: ΔAFE\(\sim\)ΔACB

c: Gọi K là giao điểm của AH với BC

=>AK vuông góc với BC tại K

Xét ΔBFH vuông tại F và ΔBEA vuông tại E có

góc FBH chung

Do đó:ΔBFH\(\sim\)ΔBEA

Suy ra: BF/BE=BH/BA

hay \(BF\cdot BA=BE\cdot BH\)

Xét ΔCEH vuông tại E và ΔCFA vuông tại F có

góc FCA chung

Do đó: ΔCEH\(\sim\)ΔCFA

Suy ra: CE/CF=CH/CA

hay \(CH\cdot CF=CE\cdot CA\)

Xét ΔBFC vuông tại F và ΔBKA vuông tại K có

góc KBA chung

Do đó: ΔBFC\(\sim\)ΔBKA

Suy ra: BF/BK=BC/BA

hay \(BF\cdot BA=BK\cdot BC\)

Xét ΔCEB vuông tại E và ΔCKA vuông tại K có

góc ECB chung

Do đó:ΔCEB\(\sim\)ΔCKA

Suy ra: CE/CK=CB/CA

hay \(CE\cdot CA=CB\cdot CK\)

\(BH\cdot BE+CH\cdot CF=BF\cdot BA+CE\cdot CA\)

\(=BC\cdot BK+BC\cdot CK=BC^2\)

b: Xét ΔABE vuông tại E và ΔACF vuông tại F có

góc BAE chung

=>ΔABE đồng dạng vớiΔACF

=>AB/AC=AE/AF

=>AB*AF=AC*AE

c: XétΔABC có

BE,CF là đường cao

BE cắt CF tại H

=>H là trực tâm

=>AH vuông góc BC

3 tháng 4 2022

c/m phần nào

3 tháng 4 2022

giup mình phần d,e,g với ạ

6 tháng 4 2017

ABCFEHK

a) Xét \(\bigtriangleup\) AFC và \(\bigtriangleup\) AEB có:

\(\widehat{BAC}\) chung

\(\widehat{AFC}=\widehat{AEB}\) =90o

\(\Rightarrow\) \(\bigtriangleup\)AFC đồng dạng với \(\bigtriangleup\) AEB(g.g)

\(\Rightarrow\) \(\dfrac{AF}{AE}=\dfrac{AC}{AB}\)

\(\Rightarrow\) \(AB.AF=AE.AC\)

b)\(\dfrac{AF}{AE}=\dfrac{AC}{AB}\) \(\Rightarrow\) \(\dfrac{AF}{AC}=\dfrac{AE}{AB}\)

Xét \(\bigtriangleup\) AEF và \(\bigtriangleup\) ABC có:

\(\widehat{BAC}\) chung

\(\dfrac{AF}{AC}=\dfrac{AE}{AB}\)(cmt)

\(\Rightarrow\) \(\bigtriangleup\) AEF đồng dạng với \(\bigtriangleup\) ABC(c.g.c)

c) Từ H vẽ HK\(\perp\)BC

Xét \(\bigtriangleup\) BKH và \(\bigtriangleup\) BEC có:

\(\widehat{HBC}\) chung

\(\widehat{BKH}=\widehat{BEC}\) =90o

\(\Rightarrow\) \(\bigtriangleup\)BKH đồng dạng với \(\bigtriangleup\)BEC (g.g)

\(\Rightarrow\) \(\dfrac{BK}{BE}=\dfrac{BH}{BC}\)

\(\Rightarrow\) BH.BE=BK.BC(1)

Xét \(\bigtriangleup\) CKH và \(\bigtriangleup\) CFB có:

\(\widehat{BCH}\) chung

\(\widehat{CKH}=\widehat{CFB}\) =90o

\(\Rightarrow\) \(\bigtriangleup\) CKH đồng dạng với \(\bigtriangleup\) CFB(g.g)

\(\Rightarrow\) \(\dfrac{CK}{CF}=\dfrac{CH}{BC}\)

\(\Rightarrow\) CH.CF=BC.CK(2)

Cộng (1) với (2) ta được:

BH.BE+CH.CF=BK.BC+CK.BC=BC.(CK+BK)=BC.BC=BC2

\(\Rightarrow\) BH.BE+CH.CF=BC2

Chúc bạn học tốt.haha

a: Xét ΔABE vuông tạiE và ΔACF vuông tại F có

góc BAE chung

Do đó: ΔABE\(\sim\)ΔACF
SUy ra: AE/AF=AB/AC
=>AE/AB=AF/AC và \(AE\cdot AC=AB\cdot AF\)

b: Xét ΔAEF và ΔABC có 

AE/AB=AF/AC

góc A chung

Do đó: ΔAEF\(\sim\)ΔABC

22 tháng 5 2022

a ).

t/g ABE đồng dạng t/g ACF ( g/g ) 

=> \(\dfrac{AB}{AC}=\dfrac{AE}{AF}\)

hay AB . AF = AC . AE

b) .

\(\dfrac{AB}{AC}=\dfrac{AE}{AF}\Rightarrow\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét t/g AEF và t/g ABC có:

góc A chung 

và \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

suy ra : t/g AEF đồng dạng tg ABC

a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{BAC}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC(g-g)

Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có 

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)

\(\widehat{EAF}\) chung

Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)

15 tháng 4 2021

Nhờ anh có thể bày cho em câu d đc không ạ.

a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

\(\widehat{BAE}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC

b: Ta có: ΔAEB\(\sim\)ΔAFC

nên AE/AF=AB/AC
hay AE/AB=AF/AC

Xét ΔAEF và ΔABC có 

AE/AB=AF/AC

\(\widehat{EAF}\) chung

DO đó: ΔAEF\(\sim\)ΔABC