K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2018

Cái  thứ nhất nhân cả tử với mẫu với x 

Cái  thứ hai nhân cả tử với mẫu với y 

Cái  thứ ba nhân cả tử với mẫu với z

Áp dụng cô si ở mẫu

dấu = xảy ra khi x=y=z=1( không TM) => Không xảy ra dấu =

=> đpcm

p/s: Mình định trình bày đầy đủ cho bạn nhưng đánh gần xong thì tự nhiên máy tính thoát ra. giờ thì hướng dẫn thôi. Sorry

6 tháng 2 2020

Chứng minh BĐT \(\ge2\)chứ?

Ta có: \(\frac{x^2}{\sqrt{1-x^2}}=\frac{x^3}{x\sqrt{1-x^2}}\ge\frac{x^3}{\frac{x^2+1-x^2}{2}}=2x^3\)

Tương tự ta có: \(\frac{y^2}{\sqrt{1-y^2}}\ge2y^3\)

Và: \(\frac{z^2}{\sqrt{1-z^2}}\ge2z^3\)

Cộng theo 3 vế BĐT trên ta có:

\(\frac{x^2}{\sqrt{1-x^2}}+\frac{y^2}{\sqrt{1-y^2}}+\frac{z^2}{\sqrt{1-z^2}}\ge2x^3+2y^3+2z^3=2\left(x^3+y^2+z^2\right)=2\left(đpcm\right)\)

9 tháng 6 2018

Sử dụng BĐT AM-GM, ta có: 

\(x^3+y^2\ge2yx\sqrt{x}\)

\(\Rightarrow\frac{2\sqrt{x}}{x^3+y^2}\le\frac{2\sqrt{x}}{2yx\sqrt{x}}=\frac{1}{xy}\)

Tương tự cộng lại suy ra: 

\(VT\le\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

18 tháng 12 2015

bài này dễ nhưng bạn phải chứng minh bđt này đã:

\(\frac{1}{a+b+c+d}\le\frac{1}{16}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)\)

với a;b;c;d là các số dương

bạn có thể cm bđt trên bằng cách biến đổi tương đương hoặc cm bđt Schwat (Sơ-vác)

Mình là 1 phần tử đại diện còn lại là hoàn toàn tt nhé 

ta có \(\frac{1}{3\sqrt{x}+3\sqrt{y}+2\sqrt{z}}=\frac{1}{2\left(\sqrt{x}+\sqrt{y}\right)+\left(\sqrt{y}+\sqrt{z}\right)+\left(\sqrt{x}+\sqrt{z}\right)}\)

\(\le\frac{1}{16}\left(\frac{1}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{y}+\sqrt{z}}+\frac{1}{\sqrt{x}+\sqrt{z}}\right)\)

Tương tự ta cm được 

\(VT\le\frac{1}{16}.4\left(\frac{1}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{y}+\sqrt{z}}+\frac{1}{\sqrt{z}+\sqrt{x}}\right)\)\(=\frac{1}{4}.3=\frac{3}{4}\)

dấu "=" khi x=y=z

 

 

 

NV
19 tháng 10 2020

\(x+y+z=xyz\Rightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\)

Đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)=\left(a;b;c\right)\Rightarrow ab+bc+ca=1\)

\(P=\frac{a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}=\frac{a}{\sqrt{ab+bc+ca+a^2}}+\frac{b}{\sqrt{ab+bc+ca+b^2}}+\frac{c}{\sqrt{ab+bc+ca+c^2}}\)

\(P=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)

\(P\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}+\frac{c}{b+c}\right)=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\) hay \(x=y=z=\sqrt{3}\)

20 tháng 3 2019

@Akai Haruma, Nguyen, Nguyễn Thị Ngọc Thơsvtkvtm

AH
Akai Haruma
Giáo viên
20 tháng 3 2019

Bạn tham khảo tại đây:

Câu hỏi của Vũ Sơn Tùng - Toán lớp 9 | Học trực tuyến

10 tháng 2 2020

Theo AM-GM: \(x^3+y^2\ge2\sqrt{x^3y^2}=2xy\sqrt{x}\)

\(\Rightarrow\frac{2\sqrt{x}}{x^3+y^2}\le\frac{2\sqrt{x}}{2xy\sqrt{x}}=\frac{1}{xy}\)

Tương tự: \(\frac{2\sqrt{y}}{y^3+z^2}\le\frac{1}{yz}\)

\(\frac{2\sqrt{z}}{z^3+x^2}\le\frac{1}{zx}\)

Cộng vế với vế => \(VT\le\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\)

Theo AM-GM; \(VT\le\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\le\frac{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{1}{z^2}+\frac{1}{x^2}}{2}=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

Dấu " = " xảy ra <=> x=y=z=1

10 tháng 2 2020

Áp dụng bất đẳng thức Cacuhy - Schwarz 

\(\Rightarrow\hept{\begin{cases}x^3+y^2\ge2\sqrt{x^3y^2}=2xy\sqrt{x}\\y^3+z^2\ge2\sqrt{y^3z^2}=2yz\sqrt{y}\\z^3+x^2\ge2\sqrt{z^3x^2}=2xz\sqrt{z}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\frac{2\sqrt{x}}{x^3+y^2}\le\frac{2\sqrt{x}}{2xy\sqrt{x}}=\frac{1}{xy}\\\frac{2\sqrt{y}}{y^3+z^2}\le\frac{2\sqrt{y}}{2yz\sqrt{y}}=\frac{1}{yz}\\\frac{2\sqrt{z}}{z^3+x^2}\le\frac{2\sqrt{z}}{2xz\sqrt{z}}=\frac{1}{xz}\end{cases}}\)

\(\Rightarrow VT\le\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\left(1\right)\)

Áp dụng bất đẳng thức Cacuchy Schwarz 

\(\Rightarrow\hept{\begin{cases}\frac{1}{x^2}+\frac{1}{y^2}\ge2\sqrt{\frac{1}{x^2y^2}}=\frac{2}{xy}\\\frac{1}{y^2}+\frac{1}{z^2}\ge2\sqrt{\frac{1}{y^2z^2}}=\frac{2}{yz}\\\frac{1}{z^2}+\frac{1}{x^2}\ge2\sqrt{\frac{1}{z^2x^2}}=\frac{2}{xz}\end{cases}}\)

\(\Rightarrow2\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\ge2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)\)

\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\ge\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\left(2\right)\)

Từ (1) và (2)

\(\Rightarrow VT\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

\(\Leftrightarrow\frac{2\sqrt{x}}{x^3+y^2}+\frac{2\sqrt{y}}{y^3+z^2}+\frac{2\sqrt{z}}{z^3+x^2}\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\left(đpcm\right)\)

3 tháng 2 2020

\(VT=\Sigma_{cyc}\frac{2\sqrt{x}}{x^3+y^2}\le\Sigma_{cyc}\frac{2\sqrt{x}}{2\sqrt{x^3y^2}}=\Sigma_{cyc}\frac{1}{\sqrt{x^2y^2}}=\Sigma_{cyc}\frac{1}{xy}\)

\(=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\) (áp dụng BĐT quen thuộc \(ab+bc+ca\le a^2+b^2+c^2\))

Đẳng thức xảy ra khi x = y = z = 1

3 tháng 2 2020

Sửa đề : \(\frac{2\sqrt{x}}{x^3+y^2}+\frac{2\sqrt{y}}{y^3+z^2}+\frac{2\sqrt{z}}{z^3+x^2}\)

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow\hept{\begin{cases}x^3+y^2\ge2\sqrt{x^3y^2}=2xy\sqrt{x}\\y^3+z^2\ge2\sqrt{y^3z^2}=2yz\sqrt{y}\\z^3+x^2\ge2\sqrt{z^3x^2}=2xz\sqrt{z}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\frac{2\sqrt{x}}{x^3+y^2}\le\frac{2\sqrt{x}}{2xy\sqrt{x}}=\frac{1}{xy}\\\frac{2\sqrt{y}}{y^3+z^2}\le\frac{2\sqrt{y}}{2yz\sqrt{y}}=\frac{1}{yz}\\\frac{2\sqrt{z}}{z^3+x^2}\le\frac{2\sqrt{z}}{2xz\sqrt{z}}=\frac{1}{xz}\end{cases}}\)

\(\Rightarrow VT\le\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\left(1\right)\)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\hept{\begin{cases}\frac{1}{x^2}+\frac{1}{y^2}\ge2\sqrt{\frac{1}{x^2y^2}}=\frac{2}{xy}\\\frac{1}{y^2}+\frac{1}{z^2}\ge2\sqrt{\frac{1}{y^2z^2}}=\frac{2}{yz}\\\frac{1}{z^2}+\frac{1}{x^2}\ge2\sqrt{\frac{1}{x^2z^2}}=\frac{2}{xz}\end{cases}}\)

\(\Rightarrow2\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\ge2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)\)

\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\ge\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\left(2\right)\)

Từ (1) và (2) :

\(\Rightarrow VT\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

\(\Leftrightarrow\frac{2\sqrt{x}}{x^3+y^2}+\frac{2\sqrt{y}}{y^3+z^2}+\frac{2\sqrt{z}}{z^3+x^2}\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\left(đpcm\right)\)

Chúc bạn học tốt !!!

NV
5 tháng 10 2020

\(\frac{P}{\sqrt{6}}=\sum\frac{1}{\sqrt{6}}.\frac{1}{\sqrt{2x^2+y^2+3}}\le\frac{1}{2}\sum\left(\frac{1}{6}+\frac{1}{2x^2+y^2+3}\right)\)

\(\frac{P}{\sqrt{6}}\le\frac{1}{4}+\frac{1}{2}\sum\frac{1}{2\left(x^2+1\right)+\left(y^2+1\right)}\le\frac{1}{4}+\frac{1}{2}\sum\frac{1}{4x+2y}\)

\(\frac{P}{\sqrt{6}}\le\frac{1}{4}+\frac{1}{4}\sum\frac{1}{x+x+y}\le\frac{1}{4}+\frac{1}{36}\left(\frac{2}{x}+\frac{1}{y}+\frac{2}{y}+\frac{1}{z}+\frac{2}{z}+\frac{1}{x}\right)\)

\(\frac{P}{\sqrt{6}}\le\frac{1}{4}+\frac{1}{12}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{2}\)

\(\Rightarrow P\le\frac{\sqrt{6}}{2}\)

Dấu "=" xảy ra khi \(x=y=z=1\)