K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2020

Từ gt, ta có \(\left(xyz\right)^2=\left[x\left(1-x\right)\right]\left[y\left(1-y\right)\right]\left[z\left(1-z\right)\right]\)

Sử dụng BĐT AM-GM dạng \(ab\le\frac{\left(a+b\right)^2}{4}\), ta có:

\(x\left(1-x\right)\le\frac{1}{4};y\left(1-y\right)\le\frac{1}{4};z\left(1-z\right)\le\frac{1}{4}\)

Nhân các bđt trên lại theo vế =. \(\left(xyz\right)^2\le\frac{1}{64}\)hay \(xyz\le\frac{1}{8}\)

Gọi A là số lớn nhất trong các số x(1-y);y(1-z); z(1-y)

khi đó từ gt, ta có:

\(3A\ge x\left(1-y\right)+y\left(1-z\right)+z\left(1-x\right)\)

\(=1-xyz-\left(1-x-y-z+xy+yz+zx-xyz\right)\)

\(=1-xyz-\left(1-x\right)\left(1-y\right)\left(1-z\right)\)

\(=1-2xyz\ge\frac{3}{4}\)

từ các đánh giá trên => \(A\ge\frac{1}{4}\)

=> đpcm

28 tháng 11 2017

ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2006}\)    (x;y;z khác 0)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)(vì x+y+z=2006)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{x+y+z}-\frac{1}{z}\)

\(\Leftrightarrow\frac{x+y}{xy}=\frac{z-\left(x+y+z\right)}{\left(x+y+z\right).z}\)

\(\Leftrightarrow\frac{x+y}{xy}=\frac{-\left(x+y\right)}{\left(x+y+z\right).z}\)

\(\Leftrightarrow-\left(x+y\right)xy=\left(x+y\right)\left(xz+yz+z^2\right)\)  (vì x;y;z khác 0)

\(\Leftrightarrow\left(x+y\right)\left(xy+yz+xz+z^2\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

=>  x+y=0 hoặc y+z=0 hoặc z+x=0

mà x+y+z=2006 nên

z=2006 hoặc x=2006 hoặc y=2006 

=> đpcm

22 tháng 2 2020

Ta giả sử 3 số đều =2

=>\(\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1\)(Đúng)

=>đpcm 

P/s : nhanh gọn lẹ :))

10 tháng 3 2020

Đặt \(A=\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=1\)

Không mất tính tổng quát giả sử:

\(\frac{1}{x+1}< \frac{1}{y+1}< \frac{1}{z+1}\)

Ta có

+) \(A>\frac{3}{1+x}\Leftrightarrow1>\frac{3}{1+x}\)

\(\Leftrightarrow\frac{1}{3}>\frac{1}{x+1}\Leftrightarrow x+1>3\)

<=> x>2(1)

+) \(A< \frac{3}{1+z}\Leftrightarrow1< \frac{3}{1+z}\Leftrightarrow\frac{1}{3}< \frac{1}{1+z}\Leftrightarrow1+z< 3\Leftrightarrow x< 2\)(2)
Từ (1) (2) => ĐPCM

AH
Akai Haruma
Giáo viên
26 tháng 12 2018

Lời giải:
\(x+y+z=2018; \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2018}\)

\(\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\Leftrightarrow \frac{x+y}{xy}+\frac{1}{z}-\frac{1}{x+y+z}=0\)

\(\Leftrightarrow \frac{x+y}{xy}+\frac{x+y}{z(x+y+z)}=0\)

\(\Leftrightarrow (x+y)\left[\frac{1}{xy}+\frac{1}{z(x+y+z)}\right]=0\)

\(\Leftrightarrow (x+y).\frac{z(x+y+z)+xy}{xyz(x+y+z)}=0\)

\(\Leftrightarrow (x+y).\frac{(z+x)(z+y)}{xyz(x+y+z)}=0\)

\(\Leftrightarrow (x+y)(y+z)(x+z)=0\)

\(\Rightarrow \left[\begin{matrix} x+y=0\\ y+z=0\\ z+x=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x+y+z=z\\ x+y+z=x\\ x+y+z=y\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} 2018=z\\ 2018=x\\ 2018=y\end{matrix}\right.\)

Tức là trong ba số $x,y,z$ phải có ít nhất một số bằng $2018$

23 tháng 9 2018

Từ x+y+z=3 ta có:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\frac{\Leftrightarrow xy+yz+zx}{xyz}=\frac{1}{x+y+z}\)

Nhân chéo ta có:

\(\left(xy+yz+zx\right)\left(x+y+z\right)=xyz\)

\(\Leftrightarrow x^2y+xyz+x^2z+y^2x+y^2z+xyz+xyz+z^2y+z^2x=xyz\)

\(\Leftrightarrow x^2y+x^2z+y^2z+y^2x+z^2x+z^2y+2xyz=0\)

\(\Leftrightarrow\left(x^2y+x^2z+y^2x+xyz\right)+\left(y^2z+z^2x+z^2y+xyz\right)=0\)

\(\Leftrightarrow x\left(xy+xz+y^2+yz\right)+z\left(xy+xz+y^2+yz\right)=0\)

\(\Leftrightarrow\left(x+z\right)\left(xy+xz+y^2+yz\right)=0\)

\(\Leftrightarrow\left(x+z\right)\left[\left(xy+y^2\right)+\left(xz+yz\right)\right]=0\)

\(\Leftrightarrow\left(x+z\right)\left[y\left(x+y\right)+z\left(x+y\right)\right]=0\)

\(\Leftrightarrow\left(x+z\right)\left(y+z\right)\left(x+y\right)=0\)

Suy ra x+z=0 hoặc y+z=0 hoặc x+y=0

Với x+z=0 ta đc y=3

Với y+z=0 ta đc x=3

Với x+y=0 ta đc z=3

Từ đó suy ra đccm

22 tháng 5 2015

Từ x+y+z=2015 => \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=x+y+z\Rightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\Rightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{xz+yz+z^2}\right)=0\Rightarrow\frac{\left(x+y\right)\left(xy+yz+zx+z^2\right)}{xyz\left(x+y+z\right)}=0\)

\(\Rightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)(Do x,y,z khác 0)

Mà x+y+z=2015 và (x+y)(y+z)(x+z)=0

=> x+y=0 => z =2015

hoặc y+z=0 => x=2015

hoặc x+z=0 => y=2015

                         Vậy nếu \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=x+y+z=2015\)thì ít nhất 1 trong 3 số x,y,z bằng 2015(ĐPCM)

               lik.e nhé!

30 tháng 10 2017

đề có sai k vậy bạn?

AH
Akai Haruma
Giáo viên
22 tháng 5 2021

Lời giải:

$x+y+z>\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$

$\Leftrightarrow x+y+z>xy+yz+xz$ (do $xyz=1$)

$\Leftrightarrow x+y+z-xy-yz-xz>0$

$\Leftrightarrow xyz+x+y+z-xy-yz-xz-1>0$

$\Leftrightarrow (x-xy)+(y+z-yz-1)+(xyz-xz)>0$

$\Leftrightarrow x(1-y)+(1-y)(z-1)-xz(1-y)>0$

$\Leftrightarrow (1-y)(x+z-1-xz)>0$

$\Leftrightarrow (1-y)(1-z)(x-1)>0$

$\Leftrightarrow (1-y)(1-z)(1-x)<0(*)$

Nếu trong 3 số $x,y,z$ đều nhỏ hơn $1$ thì $(1-y)(1-z)(1-x)>0$ (mâu thuẫn với $(*)$)

Do đó trong 3 số có ít nhất 1 số lớn hơn $1$.