Tìm GTNN của biểu thức: 2x^2 + 12x+ 20
Giúp mk với, lần này mà sai, mk sẽ ra khỏi nhà đó!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2-12x+7=x^2-12x+36-29\)
\(=\left(x-6\right)^2-29\ge-29\)
Vậy \(A_{min}=-29\Leftrightarrow x=6\)
\(C=x-x^2-4=-\left(x^2-x+4\right)\)
\(=-\left(x^2-x+\frac{1}{4}+\frac{3}{4}\right)\)
\(=-\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]\)
\(=-\left[\left(x-\frac{1}{2}\right)^2\right]-\frac{3}{4}\le-\frac{3}{4}\)
Vậy \(C_{min}=\frac{-3}{4}\Leftrightarrow x=\frac{1}{2}\)
Tìm GTNN của A=\(x^4-6x^3+12x^2-12x+2021\)
Giúp mk vs ạ mk đang cần gấp ai nhanh mk sẽ vote cho ạ :<
\(Sửa:A=x^4-6x^3+13x^2-12x+2021\\ A=\left(x^4-6x^3+9x^2\right)+4\left(x^2-3x\right)+4+2017\\ A=\left(x^2-3x\right)^2+4\left(x^2-3x\right)+4+2017\\ A=\left(x^2-3x+2\right)^2+2017\ge2017\\ A_{min}=2017\Leftrightarrow x^2-3x+2=0\Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vì | x -3 | > hoặc = 0
Suy ra : |x-3|+50 >hoặc =50
Vì A nhỏ nhất suy ra | x-3 | +50 =50
Suy ra x-3 =0
Suy ra x=3
Vậy GTNN của A = 50 khi x=3
\(M=2x^2+9y^2-6xy-6x-12y+2028\\ =3\left(x^2-2xy+y^2\right)-\left(x^2+6x+9\right)+6\left(y^2-2y+1\right)+2025\\ =\left(x-y\right)^2-\left(x-3\right)^2+6\left(y-1\right)^2+2025\ge2025\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=3\\y=1\end{matrix}\right.\) (vô lí) nên dấu \("="\) ko thể xảy ra
\(N=x^2-4xy+5y^2+10x-22y+28\\ =\left(x^2+4y^2+25-4xy-20y+10x\right)+\left(y^2-2y+1\right)+2\\=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-2y=5\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)
\(2x^2+12x+20=2\left(x^2+6x+10\right)=2\left(x^2+2.3x+3^2+1\right)=2\left[\left(x+3\right)^2+1\right]\)\(=2\left(x+3\right)^2+2\ge2\)
Đẳng thức xảy ra khi: \(2\left(x+3\right)^2=0\Rightarrow x+3=0\Rightarrow x=-3\)
Vậy giá trị nhỏ nhất của 2x2 + 12x + 20 là 2 khi x = -3
a)x2-2x+m= (x-1)2+m-1 \(\ge m-1\) Min =2 => m-1 = 2 <=> m = 3
b) = 4x2-2x+6x+m= 4x2+4x+m = (2x+1)2+m-1 \(\ge m-1\) Min=1998 <=> m-1 = 1998 <=> m = 1999
ta có : \(2x^2+12x+20=2\left(x^2+6x+10\right)\)= \(2\left(x^2+2.3.x+9-9+10\right)\)
\(=2\left[\left(x+3\right)^2+1\right]=2\left(x+3\right)^2+2\)
vì \(\left(x+3\right)^2>=0\) => \(2.\left(x+3\right)^2+2>=2\)=> \(2.\left(x+3\right)^2+2>=0\)
=> GTNN là 2 tại x = -3
\(2x^2+12x+20=2\left(x^2+6x+10\right)=2\left(x^2+2.3x+3^2+1\right)=2\left[\left(x+3\right)^2+1\right]\)
\(=2\left(x+3\right)^2+2\ge2\)
Đẳng thức xảy ra khi: \(2\left(x+3\right)^2=0\Rightarrow x+3=0\Rightarrow x=-3\)
Vậy giá trị nhỏ nhất của 2x2 + 12x + 20 là 2 khi x = -3
(Mình áp dụng cả hằng đẳng thức đó bạn)