Tim phan so nho nhat\(\dfrac{2020}{2019};\dfrac{14}{15};\dfrac{416}{208};\dfrac{21}{60};\dfrac{2468}{2468}\)
help me
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(T = \left| {x - 2019} \right| + \left| {2020 - x} \right| = \left| {x - 2019 + 2020 - x} \right| = 1 \)
Vậy \(T_{min}=1\Leftrightarrow2019\le x\le2020\)
Đặt \(A=\left|x-2019\right|+\left|2020-x\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(A=\left|x-2019\right|+\left|2020-x\right|\ge\left|x-2019+2020-x\right|\)
\(\Rightarrow A\ge\left|1\right|\)
\(\Rightarrow A\ge1.\)
Dấu '' = '' xảy ra khi:
\(\left(x-2019\right).\left(2020-x\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2019\ge0\\2020-x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2019\le0\\2020-x\le0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2019\\x\le2020\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2019\\x\ge2020\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2019\le x\le2020\\x\in\varnothing\end{matrix}\right.\)
Vậy \(MIN_A=1\) khi \(2019\le x\le2020.\)
Chúc bạn học tốt!
a, 35=5x7 => a/35 rút gọn được khi và chỉ khi a=5 hoặc a=7
Mặt khác 5 và 7 đều là số nguyên tố => a {5, 7}
b, a=7
Chúc bạn học tốt!!!
Rút gọn PS cuois 15/9 = 5/3
PS cần tìm có tử là BCNN(7,6) = 42 và mẫu là UCLN(10,5) = 5
=> Đó là PS: 42/5
Kiểm tra lại xem sao: khi nhân được từng Số TN: 12; 7 và 14
\(\dfrac{21}{60}\)
21/60