Cho tam giác nhọn xOy , trên tia Ox lấy điểm A ( A khác 0 ), trên tia Oy lấy điểm B (B khác 0) sao cho OA=OB. Kẻ AC vuông góc Oy (C thuộc Oy), BD vuông góc Ox (D thuộc Ox) gọi I là giao điểm AC và BD
a) Chứng minh am giác AOC=BOD;
b) Chứng minh tam giác AIB cân
c) so sánh IC và IA
d) chứng minh góc IAB=1/2 AOB
a: Xét ΔAOC vuông tại C và ΔBOD vuông tại D có
OA=OB
góc O chung
=>ΔAOC=ΔBOD
b: góc CAO+góc IAB=góc OAB
góc OBD+góc IBA=góc OBA
mà góc CAO=góc OBD và góc OAB=góc OBA
nên góc IAB=góc IBA
=>ΔIAB cân tại I
c: IC=ID
ID<IA
=>IC<IA