Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Xét tam giác AOC và tam giác BOD(đều là vuông)
OI là cạnh chung
OA=OB(gt)
\(\Rightarrow\) tam giác AOC= tam giác BOD(cạnh huyền cạnh góc vuông)
b)Vì tam giác AOC= tam giác BOD(cạnh huyền cạnh góc vuông)
\(\Rightarrow\)IA=IB(cặp cạnh tương ứng)
Mà IC<IB(cạnh góc vuông nhỏ hon cạnh huyền)
Do đó IC<IA
c)Vì IA=IB(CMT)
\(\Rightarrow\)tam giác AIB cân tại A
d)(mk ko hiểu bạn ghi gì cả)
Bạn tự vẽ hình nha
OA = OB (tam giác AOC = tam giác BOD)
=> Tam giác OAB cân tại O
=>\(OBA=\frac{180-BOA}{2}=\frac{180}{2}-\frac{BOA}{2}=90-\frac{BOA}{2}\) (1)
Tam giác CAB vuông tại C có:
CAB + CBA = 90
=> CAB = 90 - CBA (2)
Thay (1) vào (2), ta có:
CAB = 90 - [90 - BOA/2] = 90 - 90 + BOA/2 = BOA/2
a)
Xét t/g vg AOCvà t/g vg BOD
có:AO=BO(gt)
go1cA là góc chung
->t/g AOC=t/g BOD(c.góc vg -góc nhon kề)
b)
Xét t/g vg ACB và t/g vg BDA
có:BD=AC(t/g AOC=t/gBOD)
AB là cạnh chung
->t/g ACB=t/g BDA(c.huyền -c.góc vg)
->góc CAB=góc DBA(2 góc tương ứng)
->t/g AIB cân tại I(t/c của t/g cân)
c)
kẻ dường thẳng OI
Xét t/g vg DOI và t/g vg COI
có:OD=OC(t/g ODB=t/g OCA)
OI là cạnh chung
->t/g DOI=t/g COI(c.huyền -cạnh góc vg)
->DI=IC(2 cạnh tương ứng)
d)(ko pt lm)SORRY
a: Xét ΔAOC vuông tại C và ΔBOD vuông tại D có
OA=OB
góc O chung
=>ΔAOC=ΔBOD
b: góc CAO+góc IAB=góc OAB
góc OBD+góc IBA=góc OBA
mà góc CAO=góc OBD và góc OAB=góc OBA
nên góc IAB=góc IBA
=>ΔIAB cân tại I
c: IC=ID
ID<IA
=>IC<IA
Hình chắc bác tự vẽ đc tui vẽ nó chả cân j cả
a) +) Xét Δ AOC vuông tại C và Δ BOD vuông tại D có
OA = OB ( gt)
\(\widehat{xOy}\) : góc chung
⇒ Δ AOC= Δ BOD ( ch-gn)
b) Từ từ_____ để nghĩ
Hehe:)) Nghĩ 1 lúc cx ra câu b r này
b)
+) Xét Δ AOB có
OA = OB ( gt)
⇒ Δ AOB cân tại O
⇒ \(\widehat{OAB}=\widehat{OBA}\) tính chất tam giác cân ) (1)
+) Theo câu a ta có Δ AOC= Δ BOD
⇒ \(\widehat{OAC}=\widehat{OBD}\) ( 2 góc tương ứng) (2)
+) Ta có \(\hept{\begin{cases}\widehat{OAC}+\widehat{CAB}=\widehat{OAB}\\\widehat{OBD}+\widehat{DBA}=\widehat{OBA}\end{cases}}\) (3) ______________________________ Chỗ này mk k bt gt
Từ (1) ; (2) và (3) \(\Rightarrow\widehat{CAB}=\widehat{DBA}\)
hay \(\widehat{IAB}=\widehat{IBA}\)
+) Xét Δ AIB có
\(\widehat{IAB}=\widehat{IBA}\) ( cmt)
=> Δ AIB cân tại I
@@ Học tốt
Chiyuki Fujito ~~~