K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC và ΔCDA có

AB=CD

BC=DA

AC chung

=>ΔABC=ΔCDA

b: ABCD là hình chữ nhật

=>AC và BD cắt nhau tại trung điểm của mỗi đường và AC=BD

=>IA=IB=IC=ID

Xét ΔAIB và ΔCID có

IA=IC

góc AIB=góc CID

IB=ID

=>ΔAIB=ΔCID

c: ΔIAD có IA=ID

nên ΔIAD cân tại I

d: góc CAB=60 độ

=>góc ICD=60 độ

=>ΔICD đều

24 tháng 11 2023

a: Xét ΔOAD và ΔOCB có

OA=OC

\(\widehat{AOD}\) chung

OD=OB

Do đó: ΔOAD=ΔOCB

b: ΔOAD=ΔOCB

=>AD=CB và \(\widehat{OAD}=\widehat{OCB};\widehat{ODA}=\widehat{OBC}\)

\(\widehat{OAD}+\widehat{BAD}=180^0\)(hai góc kề bù)

\(\widehat{OCB}+\widehat{DCB}=180^0\)(hai góc kề bù)

mà \(\widehat{OAD}=\widehat{OCB}\)

nên \(\widehat{BAD}=\widehat{DCB}\)

=>\(\widehat{IAB}=\widehat{ICD}\)

OA+AB=OB

OC+CD=OD

mà OA=OC và OB=OD

nên AB=CD

Xét ΔIAB và ΔICD có

\(\widehat{IAB}=\widehat{ICD}\)

AB=CD

\(\widehat{IBA}=\widehat{IDC}\)

Do đó: ΔIAB=ΔICD

c: ΔIAB=ΔICD

=>ID=IB

Xét ΔOIB và ΔOID có

OI chung

IB=ID

OB=OD

Do đó: ΔOIB=ΔOID

=>\(\widehat{BOI}=\widehat{DOI}\)

=>OI là phân giác của góc DOB

=>OI là phân giác của \(\widehat{xOy}\)

24 tháng 11 2023

a: Xét ΔOAD và ΔOCB có

OA=OC

\(\widehat{AOD}\) chung

OD=OB

Do đó: ΔOAD=ΔOCB

b: ΔOAD=ΔOCB

=>AD=CB và \(\widehat{OAD}=\widehat{OCB};\widehat{ODA}=\widehat{OBC}\)

\(\widehat{OAD}+\widehat{BAD}=180^0\)(hai góc kề bù)

\(\widehat{OCB}+\widehat{DCB}=180^0\)(hai góc kề bù)

mà \(\widehat{OAD}=\widehat{OCB}\)

nên \(\widehat{BAD}=\widehat{DCB}\)

=>\(\widehat{IAB}=\widehat{ICD}\)

OA+AB=OB

OC+CD=OD

mà OA=OC và OB=OD

nên AB=CD

Xét ΔIAB và ΔICD có

\(\widehat{IAB}=\widehat{ICD}\)

AB=CD

\(\widehat{IBA}=\widehat{IDC}\)

Do đó: ΔIAB=ΔICD

c: ΔIAB=ΔICD

=>ID=IB

Xét ΔOIB và ΔOID có

OI chung

IB=ID

OB=OD

Do đó: ΔOIB=ΔOID

=>\(\widehat{BOI}=\widehat{DOI}\)

=>OI là phân giác của góc DOB

=>OI là phân giác của \(\widehat{xOy}\)

a: Xét ΔABH vuông tại H và ΔACB vuông tại B có 

\(\widehat{BAH}\) chung

Do đó: ΔABH\(\sim\)ΔACB

7 tháng 3 2023

a.  Xét ΔABH và ΔACB có

∠A chung

∠AHB = ∠ABC = 90

⇒Đpcm

b.  AD định lý PYTAGO cho ΔABC ta tính đc AC=25 cm

vì ΔABH ∼ ΔACB ⇒ BH/BC = AB/AC

thay số vào và giải

c. câu c tự cm theo định lý Talet đảo

 

a: Xét ΔABH vuông tại H và ΔACB  vuông tại B có

góc BAH chung

=>ΔABH đồng dạng với ΔACB

b: \(AC=\sqrt{7^2+24^2}=25\left(cm\right)\)

BH=7*24/25=6,72(cm)