Tìm GTNN Q = (x^2+1)/(x^2+6)
ai giải nhanh nhất cho ****
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3x^2+6x+3-2x^2-5x-2}{x^2+2x+1}=3-\frac{2\left(x^2+\frac{2.5}{4}x+\frac{25}{16}+\frac{7}{16}\right)}{\left(x+1\right)^2}=3-\frac{2\left(x+\frac{5}{4}\right)^2+\frac{7}{8}}{\left(x+1\right)^2}\)
lập luận giải nốt nha
Ta có:\(A=x^2+y^2-x+6y+10\)
\(\Leftrightarrow A=x^2-2.\frac{1}{2}x+\frac{1}{4}+y^2+6y+9-\frac{33}{4}\)
\(\Leftrightarrow A=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2-\frac{33}{4}\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0;\left(y+3\right)^2\ge0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2-\frac{33}{4}\ge-\frac{33}{4}\)
Dấu = xảy ra khi \(\hept{\begin{cases}x-\frac{1}{2}=0\\y+3=0\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}\)
Vậy Min A = \(-\frac{33}{4}\) khi \(x=\frac{1}{2};y=-3\)
ta có x^2 >= 0
=> x^2-x >=0
y^2 >= 0
=>y^2 +6y >= 0
=> x^2 + y^2-x+6y>=0
=>A>=10
Vậy Gtnn là 10
Giá trị nhỏ nhất là 0
Vì số mũ là 4 cho nên chắc chắn x^2+x+1 phải lớn hơn hoặc = 0
mà Số 0 là nhỏ nhất
Vậy gtnn của B chắc chắn là 0 nha bn
Chúc bn học thật tốt nha :) Sẵn bn k đúng cho mik nha !!!!!!!!!
A = căn bậc hai của 225 - 1/căn bậc hai của 5 - 1
Tức là :
\(\sqrt{244}\)và \(\sqrt{4}\)
tất nhiên ........
B = căn bậc hai của 196 - 1/căn bậc hai của 6
Tất nhiên ......
2) Tìm GTNN của A = 2 + căn bậc hai của x
\(A=2+\sqrt{x}\)
= \(\sqrt{x+2}\)
3) Tìm GTNN của B = 5 - 2 . căn bậc hai của x - 1
\(B=5-2.\sqrt{x-1}\)
= \(4-2\sqrt{x}\)
\(P=\frac{2x-1}{x^2-2}\left(ĐKXĐ:x\ne\pm\sqrt{2}\right)\)
\(\Leftrightarrow Px^2-2P=2x-1\)
\(\Leftrightarrow Px^2-2x-2P+1=0\)
*Nếu P = 0 thì ....
*Nếu P khác 0 thì pt trên là bậc 2
\(\Delta'=1-P\left(2P+1\right)=-2P^2-P+1\)
Có nghiệm thì \(\Delta'\ge0\Leftrightarrow-1\le P\le\frac{1}{2}\)
Nên Pmin = -1
Đến đây dạng này khi biết kết quả thì phân tích dễ r ha , từ làm nốt câu còn lại nhé , tương tự luôn
\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}-\frac{8x}{x^2-1}\right):\left(\frac{2x-2x^2-6}{x^2-1}-\frac{2}{x-1}\right)\)
\(A=\left(\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{8x}{\left(x+1\right)\left(x-1\right)}\right):\left(\frac{2x-2x^2-6}{\left(x-1\right)\left(x+1\right)}-\frac{2\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}\right)\)
\(A=\left(\frac{x^2+2x+1-x^2+2x-1-8x}{\left(x-1\right)\left(x+1\right)}\right):\left(\frac{2x-2x^2-6-2x-2}{\left(x+1\right)\left(x-1\right)}\right)\)
\(A=\left(\frac{4x-8x}{\left(x-1\right)\left(x+1\right)}\right).\frac{\left(x-1\right)\left(x+1\right)}{-2x^2-8}\)
..........
\(\frac{x+32}{2008}+\frac{x+31}{2009}+\frac{x+29}{2011}+\frac{x+28}{2012}+\frac{x+2056}{4}=0\) \(=0\)
\(\Leftrightarrow\)\(\frac{x+32}{2008}+1+\frac{x+31}{2009}+1+\frac{x+29}{2011}+1\)\(+\frac{x+28}{2012}+1+\frac{x+2056}{4}-4\)\(=0\)
\(\Leftrightarrow\)\(\frac{x+32}{2008}+\frac{2008}{2008}+\frac{x+31}{2009}+\frac{2009}{2009}+\)\(\frac{x+29}{2011}+\frac{2011}{2011}+\frac{x+28}{2012}+\frac{2012}{2012}+\)\(\frac{x+2056}{4}-\frac{16}{4}\)\(=0\)
\(\Leftrightarrow\)\(\frac{x+32+2008}{2008}+\frac{x+31+2009}{2009}\)\(+\frac{x+29+2011}{2011}+\frac{x+28+2012}{2012}\)\(+\frac{x+2056-16}{4}\)\(=0\)
\(\Leftrightarrow\)\(\frac{x+2040}{2008}+\frac{x+2040}{2009}+\frac{x+2040}{2011}\)\(+\frac{x+2040}{2012}+\frac{x+2040}{4}=0\)
\(\Leftrightarrow\)\(\left(x+2040\right).\left(\frac{1}{2008}+\frac{1}{2009}+\frac{1}{2011}+\frac{1}{2012}+\frac{1}{4}\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x+2040=0\\\frac{1}{2008}+\frac{1}{2009}+\frac{1}{2011}+\frac{1}{2012}+\frac{1}{4}=0\end{cases}}\)(vô lí)
\(\Leftrightarrow\)\(x=-2040\)
Vậy phương trình có nghiệm là : x = -2040
Q=(x^2+1)/(x^2+6)=1-5/(x^2+6). Ta có: x^2>=0 <=> x^2+6>=6 <=> -5/(x^2+6)<=-5/6 <=> 1-5/(x^2+6) <= 1-5/6 <=> Q<=1/6
Vậy GTNN của Q là 1/6. khi x =0