K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2022

\(\Leftrightarrow\left(x-100\right)\left(\dfrac{1}{10}+\dfrac{1}{12}+\dfrac{1}{14}+\dfrac{1}{16}+\dfrac{1}{17}\right)=0\)

\(\Leftrightarrow x=100\) vì \(\left(\dfrac{1}{10}+\dfrac{1}{12}+\dfrac{1}{14}+\dfrac{1}{16}+\dfrac{1}{17}\right)\ne0\)

\(\Leftrightarrow S=\left\{100\right\}\)

Câu 27: B

Câu 28: B

Câu 29: A

Câu 30: D

Câu 31: A
Câu 32: B

3: 

a: \(\Leftrightarrow x+1-6\sqrt{x+1}-9=0\)

=>\(\left(\sqrt{x+1}-3\right)=0\)

=>x+1=9

=>x=8

b: \(\Leftrightarrow\sqrt{\dfrac{1}{2}x-\dfrac{7}{4}\sqrt{\left(\sqrt{\dfrac{1}{2}x+1}+3\right)}}=10\)

=>\(\sqrt{\dfrac{1}{2}x-\dfrac{7}{4}\sqrt{\dfrac{1}{2}x+1}-\dfrac{21}{4}}=10\)

=>\(\dfrac{1}{2}x-\dfrac{21}{4}-\dfrac{7}{4}\sqrt{\dfrac{1}{2}x+1}=100\)

=>\(\dfrac{7}{4}\cdot\sqrt{\dfrac{1}{2}x+1}=\dfrac{1}{2}x-\dfrac{21}{4}-100=\dfrac{1}{2}x-\dfrac{421}{4}\)

=>\(\sqrt{\dfrac{1}{2}x+1}=\dfrac{2}{7}x-\dfrac{421}{7}\)

=>1/2x+1=(2/7x-421/7)^2

=>1/2x+1=4/49x^2-1684/49x+177241/49

=>\(x\simeq249,77;x\simeq177,36\)

24 tháng 10 2021

Chọn D.

4.2:

a: x^2-x+1=x^2-x+1/4+3/4

=(x-1/2)^2+3/4>=3/4>0 với mọi x

=>x^2-x+1 ko có nghiệm

b: 3x-x^2-4

=-(x^2-3x+4)

=-(x^2-3x+9/4+7/4)

=-(x-3/2)^2-7/4<=-7/4<0 với mọi x

=>3x-x^2-4 ko có nghiệm

5:

a: x^2+y^2=25

x^2-y^2=7

=>x^2=(25+7)/2=16 và y^2=16-7=9

x^4+y^4=(x^2)^2+(y^2)^2

=16^2+9^2

=256+81

=337

b: x^2+y^2=(x+y)^2-2xy

=1^2-2*(-6)

=1+12=13

x^3+y^3=(x+y)^3-3xy(x+y)

=1^3-3*1*(-6)

=1+18=19

 

8 tháng 8 2023

mik cảm ơn bạn nhiều vì đã giúp mik

 

13 tháng 4 2023

`7,`

`a, B+A=4x-2x^2+3`

`-> B=(4x-2x^2+3)-A`

`-> B=(4x-2x^2+3)-(x^2-2x+1)`

`B=4x-2x^2+3-x^2+2x-1`

`B=(-2x^2-x^2)+(4x+2x)+(3-1)`

`B=-3x^2+6x+2`

`b, C-A=-x+7`

`-> C=(-x+7)+A`

`-> C=(-x+7)+(x^2-2x+1)`

`-> C=-x+7+x^2-2x+1`

`C=x^2+(-x-2x)+(7+1)`

`C=x^2-3x+8`

`c,`

`A-D=x^2-2`

`-> D= A- (x^2-2)`

`-> D=(x^2-2x+1)-(x^2-2)`

`D=x^2-2x+1-x^2+2`

`D=(x^2-x^2)-2x+(1+2)`

`D=-2x+3`

13 tháng 4 2023

`6,`

`a,`

`P+Q=4x-2x^2+3`

`-> Q=(4x-2x^2+3)-P`

`-> Q=(4x-2x^2+3)-(3x^2+x-1)`

`Q=4x-2x^2+3-3x^2-x+1`

`Q=(-2x^2-3x^2)+(4x-x)+(3+1)`

`Q=x^2+3x+4`

`b,`

`x^2-5x+2-P=H`

`-> H= (x^2-5x+2)-(3x^2+x-1)`

`H=x^2-5x+2-3x^2-x+1`

`H=(x^2-3x^2)+(-5x-x)+(2+1)`

`H=-4x^2-6x+3`

`c,`

`P-R=5x^2-3x-4`

`-> R= P- (5x^2-3x-4)`

`-> R=(3x^2+x-1)-(5x^2-3x-4)`

`R=3x^2+x-1-5x^2+3x+4`

`R=(3x^2-5x^2)+(x+3x)+(-1+4)`

`R=-2x^2+4x+3`

8 tháng 4 2022

where do you think people will live ?

8 tháng 4 2022

Where do you think people will live?

14 tháng 6 2021

\(A=\dfrac{4x+2\sqrt{x}+2}{2\sqrt{x}+1}=\dfrac{2\sqrt{x}\left(2\sqrt{x}+1\right)+2}{2\sqrt{x}+1}=2\sqrt{x}+\dfrac{2}{2\sqrt{x}+1}\)

\(=2\sqrt{x}+1+\dfrac{2}{2\sqrt{x}+1}-1\ge2\sqrt{\left(2\sqrt{x}+1\right)\cdot\dfrac{2}{2\sqrt{x}+1}}-1=2\sqrt{2}-1\)

=> A \(\ge2\sqrt{2}-1\)

Dấu "=" xảy ra <=> \(2\sqrt{x}+1=\dfrac{2}{2\sqrt{x}+1}\)

<=> \(\left(2\sqrt{x}+1\right)^2=2\) <=> \(\left[{}\begin{matrix}2\sqrt{x}+1=2\\2\sqrt{x}+1=-2\left(loại\right)\end{matrix}\right.\)

<=> \(\sqrt{x}=\dfrac{1}{2}\) <=> \(x=\dfrac{1}{4}\)(tm)

Vậy minA = \(2\sqrt{2}-1\) khi x = 1/4