CHO TÍCH :A= \(\frac{1}{2}\)X\(\frac{3}{4}\)X\(\frac{5}{6}\)X....X\(\frac{79}{80}\) . CMR : A<\(\frac{1}{9}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C< \frac{2}{3}.\frac{4}{5}......\frac{80}{81}\Rightarrow C.C< \frac{C.2....80}{3.5....81}=\frac{1.2.3....79.80}{2.3.4....81}=\frac{1}{81}=\left(\frac{1}{9}\right)^2mà:C>0\Rightarrow C< \frac{1}{9}\)
1
Ez lắm =)
Bài 1:
Với mọi gt \(x,y\in Q\) ta luôn có:
\(x\le\left|x\right|\) và \(-x\le\left|x\right|\)
\(y\le\left|y\right|\) và \(-y\le\left|y\right|\Rightarrow x+y\le\left|x\right|+\left|y\right|\) và \(-x-y\le\left|x\right|+\left|y\right|\)
Hay: \(x+y\ge-\left(\left|x\right|+\left|y\right|\right)\)
Do đó: \(-\left(\left|x\right|+\left|y\right|\right)\le x+y\le\left|x\right|+\left|y\right|\)
Vậy: \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)
Dấu "=" xảy ra khi: \(xy\ge0\)
Ta đặt B=\(\frac{2}{3}.\frac{4}{5}...\frac{80}{81}\)
Mà \(\frac{1}{2}<\frac{2}{3};\frac{3}{4}<\frac{4}{5};...;\frac{79}{80}<\frac{80}{81}\)
=>A<B
=>A2<AB=\(\frac{1}{2}.\frac{2}{3}.....\frac{80}{81}=\frac{1}{81}\)
=>A2<\(\frac{1}{81}\)
=>A<\(\sqrt{\frac{1}{81}}=\frac{1}{9}\)(đpcm)
ta có 1/2 * 3/ 4 * 5/6 *... * 79/80 = 0.0889
so sánh a với 1/9
0.0889 < 0.(1)
=> A < 1/9
Với mọi n nguyên dương ta có:
\(\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)=1\Rightarrow\frac{1}{\sqrt{n+1}+\sqrt{n}}=\sqrt{n+1}-\sqrt{n}\)
Với k nguyên dương thì
\(\frac{1}{\sqrt{k-1}+\sqrt{k}}>\frac{1}{\sqrt{k+1}+\sqrt{k}}\Rightarrow\frac{2}{\sqrt{k-1}+\sqrt{k}}>\frac{1}{\sqrt{k-1}+\sqrt{k}}+\frac{1}{\sqrt{k+1}+\sqrt{k}}=\sqrt{k}-\sqrt{k-1}+\sqrt{k+1}-\sqrt{k}\)
\(=\sqrt{k+1}-\sqrt{k-1}\)(*)
Đặt A = vế trái. Áp dụng (*) ta có:
\(\frac{2}{\sqrt{1}+\sqrt{2}}>\sqrt{3}-\sqrt{1}\)
\(\frac{2}{\sqrt{3}+\sqrt{4}}>\sqrt{5}-\sqrt{3}\)
...
\(\frac{2}{\sqrt{79}+\sqrt{80}}>\sqrt{81}-\sqrt{79}\)
Cộng tất cả lại
\(2A=\frac{2}{\sqrt{1}+\sqrt{2}}+\frac{2}{\sqrt{3}+\sqrt{4}}+....+\frac{2}{\sqrt{79}+\sqrt{80}}>\sqrt{81}-1=8\Rightarrow A>4\left(đpcm\right)\)
3.
Theo bất đẳng thức cô si ta có:
\(\sqrt{b-1}=\sqrt{1.\left(b-1\right)}\le\frac{1+b-1}{2}=\frac{b}{2}\Rightarrow a.\sqrt{b-1}\le\frac{a.b}{2}\)
Tương tự \(\Rightarrow b.\sqrt{a-1}\le\frac{a.b}{2}\Rightarrow a.\sqrt{b-1}+b.\sqrt{a-1}\le a.b\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=2\)
\(a)5-\left(x-6\right)=4\left(3-2x\right)\)
\(\Leftrightarrow5-x+6=12-8x\)
\(\Leftrightarrow-x+8x=12-5-6\)
\(\Leftrightarrow7x=1\Leftrightarrow x=\frac{1}{7}\)
a) 5-(x-6)=4(3-2x)
<=>5-x-6=12-8x
<=>-x+8x=2-5-6
<=>7x=1
<=>x=1/7