K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2019

\(C< \frac{2}{3}.\frac{4}{5}......\frac{80}{81}\Rightarrow C.C< \frac{C.2....80}{3.5....81}=\frac{1.2.3....79.80}{2.3.4....81}=\frac{1}{81}=\left(\frac{1}{9}\right)^2mà:C>0\Rightarrow C< \frac{1}{9}\)

12 tháng 7 2019

Shitbo ơi em có thể giải theo cách cấp 1 được không?

12 tháng 2 2016

Ta đặt B=\(\frac{2}{3}.\frac{4}{5}...\frac{80}{81}\)

Mà \(\frac{1}{2}<\frac{2}{3};\frac{3}{4}<\frac{4}{5};...;\frac{79}{80}<\frac{80}{81}\)

=>A<B

=>A2<AB=\(\frac{1}{2}.\frac{2}{3}.....\frac{80}{81}=\frac{1}{81}\)

=>A2<\(\frac{1}{81}\)

=>A<\(\sqrt{\frac{1}{81}}=\frac{1}{9}\)(đpcm)

5 tháng 2 2016

http://olm.vn/hoi-dap/question/419438.html

14 tháng 3 2018

ta có 1/2 * 3/ 4 * 5/6 *... * 79/80 = 0.0889

so sánh a với 1/9 

0.0889  < 0.(1)

=> A < 1/9

Giải:

a)  \(\dfrac{7}{x}< \dfrac{x}{4}< \dfrac{10}{x}\) 

\(\Rightarrow7< \dfrac{x^2}{4}< 10\) 

\(\Rightarrow\dfrac{28}{4}< \dfrac{x^2}{4}< \dfrac{40}{4}\) 

\(\Rightarrow x^2=36\) 

\(\Rightarrow x=6\) 

b) \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}\) 

Ta có:

\(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\) 

\(\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\) 

\(\dfrac{1}{4^2}=\dfrac{1}{4.4}< \dfrac{1}{3.4}\) 

\(...\) 

\(\dfrac{1}{9^2}=\dfrac{1}{9.9}< \dfrac{1}{8.9}\) 

\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}\) 

\(\Rightarrow A< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}\) 

\(\Rightarrow A< \dfrac{1}{1}-\dfrac{1}{9}\) 

\(\Rightarrow A< \dfrac{8}{9}\left(1\right)\) 

Ta có:

\(\dfrac{1}{2^2}=\dfrac{1}{2.2}>\dfrac{1}{2.3}\) 

\(\dfrac{1}{3^2}=\dfrac{1}{3.3}>\dfrac{1}{3.4}\) 

\(\dfrac{1}{4^2}=\dfrac{1}{4.4}>\dfrac{1}{4.5}\) 

 \(...\) 

\(\dfrac{1}{9^2}=\dfrac{1}{9.9}>\dfrac{1}{9.10}\) 

\(\Rightarrow A>\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}\) 

\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\) 

\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{10}\) 

\(\Rightarrow A>\dfrac{2}{5}\left(2\right)\) 

Từ (1) và (2), ta có:

\(\Rightarrow\dfrac{2}{5}< A< \dfrac{8}{9}\left(đpcm\right)\)

25 tháng 5 2021

Bạn có thể viết thay dòng "Từ (1) và (2)" thành "Từ các điều kiện trên" bạn nhé !(bạn ko cần phải sửa, đây chỉ là gợi ý)hihi

21 tháng 7 2019

Bn tham khảo link nài nha :

https://olm.vn/hoi-dap/detail/54150812747.html

~Study well~

#KSJ

Ta có:\(A=\frac{1}{2}\cdot\frac{3}{4}\cdot...\cdot\frac{79}{80}\Rightarrow A< \frac{2}{3}\cdot\frac{4}{5}\cdot...\cdot\frac{80}{81}\)

\(\Leftrightarrow A^2< \frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{79}{80}\cdot\frac{80}{81}=\frac{1}{81}=\left(\frac{1}{9}\right)^2\)

\(\Leftrightarrow A< \frac{1}{9}\)

Nhớ tk mk nha!