K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2016

ta có a+2017/b+2018 < a+2018/b+2018

so sánh a/b và a+2018/b+2018 ta có

1-a/b=b-a/b

1-a+2018/b+2018=b-a/b+2018 =>a/b>a+2018/b+2018>a+2017/b+2018

13 tháng 4 2019

\(A=\frac{2017^{2018+1}}{2017^{2018-3}}\)và \(B=\frac{2017^{2018-1}}{2017^{2018-5}}\)

Có \(A=\frac{2017^{2019}}{2017^{2015}}\)và \(B=\frac{2017^{2017}}{2017^{2013}}\)

\(\frac{2017^{2019}}{2017^{2015}}>\frac{2017^{2018}}{2017^{2015}}\)\(\frac{2017^{2017}}{2017^{2013}}>\frac{2017^{2017}}{2017^{2015}}\)

Vì \(\frac{2017^{2018}}{2017^{2015}}>\frac{2017^{2017}}{2017^{2015}}\)

Vậy A>B

7 tháng 11 2017

Ax2=2+2^2+2^3+...+2^2018

Ax2 - A =(2+2^2+2^3+...+2^2018)-(2^0+2^1+2^2+...+2^2017)=2^2018-1

Mà 2^2018-1<2^2018 nên A<b

20 tháng 9 2017

nguyễn trung ruồi

20 tháng 9 2017

a+2017/b+2017=a+2017-2017/b+2017-2017=a/b

=> a/b=a+2017/b+2017

19 tháng 6 2017

Cậu quy đồng lên r so sánh

Còn mún làm thì phải thay số của bài này

Link:

Câu hỏi của Hoàng hùng - Toán lớp 7 - Học toán với OnlineMath

19 tháng 6 2017

kết quả nó là :

  => \(\frac{a}{b}\)\(\frac{a+2001}{b+2001}\)

     còn cách làm thì vào trang Câu hỏi của Hoàng hùng - Toán lớp 7 - Học toán với OnlineMath

22 tháng 3 2019

Ta có 

A= \(\frac{2017^{2018}-3+4}{2017^{2018}-3}=1+\frac{4}{2017^{2018}-3}\)

B= \(1+\frac{4}{2017^{2018}-5}\)

vậy A > B

12 tháng 4 2018

Ta có : \(0< \frac{2017}{2018}< 1\) nên   \(\frac{2017}{2018}>\frac{2017+2019}{2018+2019}\)(1)

\(0< \frac{2018}{2019}< 1\) nên \(\frac{2018}{2019}>\frac{2018+2018}{2018+2019}\) (2)

Cộng vế theo vế 1 và 2 ta được : \(B=\frac{2017}{2018}+\frac{2018}{2019}>\frac{2017+2018+2018+2019}{2018+2019}=\frac{2017+2018}{2018 +2019}+1=A+1>A\)

Vậy B>A

4 tháng 4 2017

k mk đi mà làm ơnnnnnnnnnn

4 tháng 4 2017

Tính A và B rồi ta đi so sánh:

A = \(\frac{2016}{2017}\) + \(\frac{2017}{2018}\) = \(1.999008674\)

B = \(\frac{2016+2017}{2017+2018}\) = \(0.9995043371\)

Mà 1.999008674 > 0.9995043371

Nên: A > B