K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2016

ta có a+2017/b+2018 < a+2018/b+2018

so sánh a/b và a+2018/b+2018 ta có

1-a/b=b-a/b

1-a+2018/b+2018=b-a/b+2018 =>a/b>a+2018/b+2018>a+2017/b+2018

20 tháng 9 2017

nguyễn trung ruồi

20 tháng 9 2017

a+2017/b+2017=a+2017-2017/b+2017-2017=a/b

=> a/b=a+2017/b+2017

19 tháng 6 2017

Cậu quy đồng lên r so sánh

Còn mún làm thì phải thay số của bài này

Link:

Câu hỏi của Hoàng hùng - Toán lớp 7 - Học toán với OnlineMath

19 tháng 6 2017

kết quả nó là :

  => \(\frac{a}{b}\)\(\frac{a+2001}{b+2001}\)

     còn cách làm thì vào trang Câu hỏi của Hoàng hùng - Toán lớp 7 - Học toán với OnlineMath

21 tháng 9 2016

1/ Ta có \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)

\(\Leftrightarrow\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}=\frac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}=0\)

\(\Rightarrow bz-cy=cx-az=ay-bx=0\Leftrightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)

2/ Giả sử \(a>b\Rightarrow\frac{a}{b}>1\)

Ta sẽ chứng minh \(\frac{a}{b}>\frac{a+2017}{b+2017}\)  . Thật vậy : \(\frac{a}{b}>\frac{a+2017}{b+2017}\Leftrightarrow ab+2017a>ab+2017b\Leftrightarrow a>b\) luôn đúng

Giả sử \(a< b\) thì \(\frac{a}{b}< 1\Rightarrow\frac{a}{b}< \frac{a+2017}{b+2017}\) . Thật vậy : 

\(\frac{a}{b}< \frac{a+2017}{b+2017}\Rightarrow ab+2017a< ab+2017b\Leftrightarrow a< b\) luôn đúng

Giả sử \(a=b\Leftrightarrow\frac{a}{b}=1=\frac{2017}{2017}=\frac{a+2017}{b+2017}\)

 

21 tháng 9 2016

Em cảm ơn chị ạ. ^_^ 

13 tháng 4 2019

\(A=\frac{2017^{2018+1}}{2017^{2018-3}}\)và \(B=\frac{2017^{2018-1}}{2017^{2018-5}}\)

Có \(A=\frac{2017^{2019}}{2017^{2015}}\)và \(B=\frac{2017^{2017}}{2017^{2013}}\)

\(\frac{2017^{2019}}{2017^{2015}}>\frac{2017^{2018}}{2017^{2015}}\)\(\frac{2017^{2017}}{2017^{2013}}>\frac{2017^{2017}}{2017^{2015}}\)

Vì \(\frac{2017^{2018}}{2017^{2015}}>\frac{2017^{2017}}{2017^{2015}}\)

Vậy A>B

7 tháng 11 2017

Ax2=2+2^2+2^3+...+2^2018

Ax2 - A =(2+2^2+2^3+...+2^2018)-(2^0+2^1+2^2+...+2^2017)=2^2018-1

Mà 2^2018-1<2^2018 nên A<b

24 tháng 6 2017

\(\frac{a}{b}>\frac{a+2017}{b+2017}\)

21 tháng 8 2017

AI

K

CHO

MINH

VOI

CAM

ON

17 tháng 7 2018

Ta có: 

\(1-\frac{a}{b}=\frac{b-a}{b}\)

\(1-\frac{a+2018}{b+2018}=\frac{b-a}{b+2018}\)

Do b+2018>b => \(\frac{b-a}{b}>\frac{b-a}{b+2018}\Rightarrow1-\frac{a}{b}>1-\frac{a+2018}{b+2018}\)\(\Rightarrow\frac{a}{b}< \frac{a+2018}{b+2018}\)