tìm một số có 2 chư số biết rằng, số đó gấp 3 lần tích các chữ số của nó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
:v từ 2016 r h vẫn chx có câu trả lời thật đáng thương nhưng mik ko làm dc tại mx lớp 5
Gọi số cần tìm là ab. a x b x 3 = ab. => ab : 3 = a x b => (a x 10 +b) : 3 = a x b=> a x 10 + b = a x b x 3=> 10a + b=3a x b=>10a=(3a x b)-b
Cách 1 : Gọi số phải tìm là abc. Theo bài ra ta có
abc = 5 x a x b x c.
Vì a x 5 x b x c chia hết cho 5 nên abc chia hết cho 5. Vậy c = 0 hoặc 5, nhưng c không thể bằng 0, vậy c = 5. Số phải tìm có dạng ab5. Thay vào ta có.
100 x a + 10 x b + 5 = 25 x a x b.
20 x a + 2 x b +1 = 5 x a x b.
Vì a x 5 x b chia hết cho 5 nên 2 x b + 1 chia hết cho 5. Vậy 2 x b có tận cùng bằng 4 hoặc 9, nhưng 2 x b là số chẵn nên b = 2 hoặc 7.
- Trường hợp b = 2 ta có a25 = 5 x a x 2. Vế trái là số lẻ mà vế phải là số chẵn. Vậy trường hợp b = 2 bị loại.
- Trường hợp b = 7 ta có 20 x a + 15 = 35 x a. Tính ra ta được a = 1.
Thử lại :
175 = 5 x 7 x 5.
Vậy số phải tìm là 175.
Cách 2 :
Tương tự cach 1 ta có :
ab5 = 25 x a x b
Vậy ab5 chia hết cho 25, suy ra b = 2 hoặc 7. Mặt khác, ab5 là số lẻ cho nêna, b phải là số lẻ suy ra b = 7. Tiếp theo tương tự cách 1 ta tìm được a = 1. Số phải tìm là 175.
Cách 1:
Gọi số phải tìm là abc. Theo bài ra ta có
abc = 5 x a x b x c.
Vì a x 5 x b x c chia hết cho 5 nên abc chia hết cho 5. Vậy c = 0 hoặc 5, nhưng c không thể bằng 0, vậy c = 5. Số phải tìm có dạng ab5. Thay vào ta có:
100 x a + 10 x b + 5 = 25 x a x b.
20 x a + 2 x b +1 = 5 x a x b.
Vì a x 5 x b chia hết cho 5 nên 2 x b + 1 chia hết cho 5. Vậy 2 x b có tận cùng bằng 4 hoặc 9, nhưng 2 x b là số chẵn nên b = 2 hoặc 7.
- Trường hợp b = 2 ta có a25 = 5 x a x 2. Vế trái là số lẻ mà vế phải là số chẵn. Vậy trường hợp b = 2 bị loại.
- Trường hợp b = 7 ta có 20 x a + 15 = 35 x a. Tính ra ta được a = 1.
Thử lại: 175 = 5 x 7 x 5.
Vậy số phải tìm là 175.
Cách 2:
Tương tự cach 1 ta có:
ab5 = 25 x a x b
Vậy ab5 chia hết cho 25, suy ra b = 2 hoặc 7. Mặt khác, ab5 là số lẻ cho nên a, b phải là số lẻ suy ra b = 7. Tiếp theo tương tự cách 1 ta tìm được a = 1. Số phải tìm là 175.
Cách 1:
Gọi số phải tìm là abc. Theo bài ra ta có
abc = 5 × a × b × c.
Vì a × 5 × b × c chia hết cho 5 nên abc chia hết cho 5. Vậy c = 0 hoặc 5, nhưng c không thể bằng 0, vậy c = 5. Số phải tìm có dạng ab5. Thay vào ta có:
100 × a + 10 × b + 5 = 25 × a × b.
20 × a + 2 × b +1 = 5 × a × b.
Vì a × 5 × b chia hết cho 5 nên 2 × b + 1 chia hết cho 5. Vậy 2 × b có tận cùng bằng 4 hoặc 9, nhưng 2 × b là số chẵn nên b = 2 hoặc 7.
- Trường hợp b = 2 ta có a25 = 5 × a × 2. Vế trái là số lẻ mà vế phải là số chẵn. Vậy trường hợp b = 2 bị loại.
- Trường hợp b = 7 ta có 20 × a + 15 = 35 × a. Tính ra ta được a = 1.
Thử lại: 175 = 5 × 7 × 5.
Vậy số phải tìm là 175.
Cách 2:
Tương tự cach 1 ta có:
ab5 = 25 × a × b
Vậy ab5 chia hết cho 25, suy ra b = 2 hoặc 7. Mặt khác, ab5 là số lẻ cho nên a, b phải là số lẻ suy ra b = 7. Tiếp theo tương tự cách 1 ta tìm được a = 1. Số phải tìm là 175.
Gọi số cần tìm là ab
Ta có ab=3.a.b
=>10a+b=3.a.b (1)
=>10a+b chia hết cho a (1)
Vì 10 a : a nên b :a
Đặt b=ka, thay vào (1) ta có:
10a+ka :=3.a.ka
a(10+k)=3.a.ka
10+k=3ak (2)
=>10+k : k
=>10 : k
k phải nhỏ hơn 10, vì nếu lớn hơn hoặc=10 thì a có 2 chữ số
=> k \(\in\) { 1;2;5}
Với k=1 thì thay vào (2) ta có 11=3a, loại
Với k=2, thay vào (2) ta có 12=6a =>a=2 =>b=4. Ta có 24=3.2.4
Với k=5, thay vào (2) ta có 15=15a =>a=1 =>b=5. Ta có 15=3.1.5
ta có : ab = ( a + b ) * 3
a * 10 + b = a *3 + b * 3
a * 7 = b * 2 ( trừ cả hai vế cho a và b )
nếu a = 2
suy ra b = 7
thử lại 27 = ( 2+ 7) * 3
đáp số : 27.