K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
1 tháng 4 2022

Câu 9:

Khi cùng bớt ở cả tử số và mẫu số đi một số thì hiệu giữa mẫu số và tử số không đổi. 

Hiệu giữa mẫu số và tử số là: 

\(99-74=25\)

Nếu phân số mới có tử số là \(1\)phần thì mẫu số là \(6\)phần.

Hiệu số phần bằng nhau là: 

\(6-1=5\)(phần) 

Tử số mới là: 

\(25\div5\times1=5\)

Số cần tìm là: 

\(74-5=69\)

DD
1 tháng 4 2022

Câu 10: 

Số học sinh thích học ít nhất một môn Toán hoặc Tiếng Việt là: 

\(45-3=42\)(học sinh) 

Số học sinh thích học cả hai môn Toán và Tiếng Việt là: 

\(28+20-42=6\)(học sinh) 

24 tháng 5 2022

Độ dài đường chéo BD là:

80 : ( 1+3) x 1 = 20 (cm)

Độ dài đường chéo AC là:

80 - 20 = 60 (cm)

Diện tích hình thoi là:

\(\dfrac{60\times20}{2}=600\left(cm^2\right)\)

24 tháng 5 2022

ũaaa ũaaa cả lớp nóa vô đây hỏi 1 bài hã ta? thấy bài này mấy lần rùi đóa:v

2 tháng 6 2021

Yêu cầu bài toán thỏa mãn khi:

\(\left\{{}\begin{matrix}\Delta=\left(m-2\right)^2-4\left(m+8\right)>0\\x_1.x_2=m+8>0\\x_1+x_2=m-2< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-8m-28>0\\m>-8\\m< 2\end{matrix}\right.\)

\(\Leftrightarrow-8< m< 4-2\sqrt{11}\)

Mà \(m\in Z\Rightarrow m\in\left\{-7;-6;-5;-4;-3;-2\right\}\)

\(\Rightarrow\) Có 6 giá trị nguyên thỏa mãn.

NV
1 tháng 6 2021

\(\Delta'=4m^2-2\left(2m^2-1\right)=2>0\) pt luôn có 2 nghiệm

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=\dfrac{2m^2-1}{2}\end{matrix}\right.\)

Do \(x_1\) là nghiệm nên: \(2x_1^2-4mx_1+2m^2-1=0\Leftrightarrow2x_1^2=4mx_1-2m^2+1\)

Thay vào bài toán:

\(4mx_1-2m^2+1+4mx_2+2m^2-9< 0\)

\(\Leftrightarrow4m\left(x_1+x_2\right)-8< 0\)

\(\Leftrightarrow8m^2-8< 0\)

\(\Rightarrow m^2< 1\Rightarrow-1< m< 1\)

NV
1 tháng 6 2021

Ta có: \(\widehat{BCD}=\dfrac{1}{2}\widehat{BOD}=20^0\) (góc nội tiếp bằng 1 nửa góc ở tâm cùng chắn BD)

\(\widehat{BEC}=180^0-\widehat{BED}=120^0\)

\(\Rightarrow\widehat{CBA}=180^0-\left(\widehat{BEC}+\widehat{BCD}\right)=40^0\) (tổng 3 góc trong tam giác)

\(\Rightarrow sđ\stackrel\frown{AC}=2\widehat{CBA}=80^0\)

NV
1 tháng 6 2021

Hình vẽ (chỉ mang tính chất minh họa):

undefined

2 tháng 6 2021

Gọi \(E=BH\cap AC\) => \(EB\perp AC\)

Xét \(\Delta AHE\) và \(\Delta BHD\) có:

\(AH=HD\)

\(\widehat{AHE}=\widehat{BHD}\) (hai góc đối đỉnh)

\(\widehat{AEH}=\widehat{BDH}=90^0\)

=> \(\Delta AHE\)=\(\Delta BHD\) (ch-gn) \(\Rightarrow AE=DH\)

Tam giác ABE vuông tại E có: \(cosA=\dfrac{AE}{AB}=\dfrac{DH}{AB}\)

Tam giác BAD vuông tại D có: \(cosB=\dfrac{BD}{AB}\)

\(\Rightarrow cosA=cosB\) 

Ý D

2 tháng 6 2021

Do M và N lần lượt là trung điểm của cung AB,AC => \(sđ\stackrel\frown{AN}=sđ\stackrel\frown{NC};sđ\stackrel\frown{AM}=sđ\stackrel\frown{MB}\)

Có \(\widehat{AHK}=\dfrac{1}{2}\left(sđ\stackrel\frown{AN}+sđ\stackrel\frown{MB}\right)=\dfrac{1}{2}\left(sđ\stackrel\frown{NC}+sđ\stackrel\frown{AM}\right)\)\(=\widehat{AKH}\)

=> Tam giác AHK cân tại A

Ý A

31 tháng 5 2021

Gọi \(J=CE\cap AB\)\(F=BD\cap AC\) , \(H=CE\cap BD\)

Có \(\widehat{EAB}=\widehat{ECB}=\dfrac{1}{2}sđ\stackrel\frown{EB}\)

\(\widehat{CAD}=\widehat{DBC}=\dfrac{1}{2}sđ\stackrel\frown{DC}\)

\(\Rightarrow\widehat{EAB}+\widehat{CAD}=\widehat{ECB}+\widehat{DBC}=180^0-\widehat{BHC}\)  (*)

Lại có \(\widehat{AJC}+\widehat{AFB}=180^0\) => Tứ giác AJHF nội tiếp đường tròn

\(\Rightarrow180^0=\widehat{BAC}+\widehat{JHF}=\widehat{BAC}+\widehat{BHC}\)

\(\Rightarrow180^0-\widehat{BHC}=\widehat{BAC}\) (2*)

Từ (*); (2*) => \(\widehat{EAB}+\widehat{CAD}=\widehat{BAC}\)

\(\Leftrightarrow\widehat{EAB}+\widehat{BAC}+\widehat{CAD}=2\widehat{BAC}\)

\(\Leftrightarrow\widehat{EAD}=2\alpha\)

Ý C

31 tháng 5 2021

Ta có \(\widehat{MAC}=\dfrac{1}{2}sđ\stackrel\frown{MB}=\dfrac{1}{2}sđ\stackrel\frown{MA}=\widehat{MDA}\Rightarrow\Delta MAC\sim\Delta MDA\left(g.g\right)\Rightarrow MA^2=MC.MD=\left(12\right)^2\Rightarrow MA=12\).

Chọn C

31 tháng 5 2021

Kẻ đường cao AH. Khi đó \(BH=CH=a\).

Ta có \(CD.CA=CH.CB\Rightarrow CD=\dfrac{2a^2}{b}\Rightarrow AD=\left|AC-CD\right|=\left|b-\dfrac{2a^2}{b}\right|=\dfrac{\left|b^2-2a^2\right|}{b}\)