Chứng minh rằng \(55^{n+1}-55^n\)chia hết cho 54 ( với n là số tự nhiên )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(55^{n+1}-55^n\)
\(=55^n.55-55^n\)
\(=55^n.\left(55-1\right)\)
\(=55^n.54\)
Ta có: \(54⋮54\)
\(\Rightarrow55^n.54⋮54\)
\(\Rightarrow55^{n+1}-55^n⋮54\)
đpcm
\(\left(5n+2\right)^2-4\)
\(=\left(5n+2\right)^2+2^2\)
\(=\left(5n+2+2\right).\left(5n+2-2\right)\)
\(=\left(5n+4\right).\left(5n\right)\)
Vậy \(\left(5n+2\right)^2-4\)chia hết cho 5 với mọi số nguyên n
Giải
55^(n+1) -55^n
= 55^n.55 -55^n
=55^n( 55 - 1)
=55^n.54 luôn luôn chia hết cho 54 ( do tích có 1 thừa số là 54)
Giải:
Ta có ; 55^(n+1) -55^n
= 55^n.55 -55^n
=55^n( 55 - 1)
=55^n.54 luôn luôn chia hết cho 54 ( do tích có 1 thừa số là 54)
Lời giải:
$55^{n+1}-55^2=55^2[55^{n-1}-1]=55^2(55-1)(55^{n-2}+55^{n-3}+...+55+1)$
$=54.55^2(55^{n-2}+55^{n-3}+...+55+1)\vdots 54$
Ta có đpcm.
Ta có: \(55^{n+1}-55^n=55^n.55-55^n\)= \(55^n\left(55-1\right)=55^n.54\)
Mà \(55^n.54⋮54\)(luôn đúng) => \(55^{n+1}-55^n⋮54\)(ĐPCM)
Giải:
Ta có ; 55^(n+1) -55^n
= 55^n.55 -55^n
=55^n( 55 - 1)
=55^n.54 luôn luôn chia hết cho 54 ( do tích có 1 thừa số là 54)
Giải:
Ta có ; 55^(n+1) -55^n
= 55^n.55 -55^n
=55^n( 55 - 1)
=55^n.54 luôn luôn chia hết cho 54 ( do tích có 1 thừa số là 54)
Ta có:
55n+1-55n=55n(55-1)=55n.54 chia hết cho 54
Vậy 55n+1-55n chia hết cho 54 (đpcm)
\(55^{n+1}-55^n=55^n\cdot\left(55-1\right)=55^n\cdot54\)chia hết cho 54 với mọi n là số tự nhiên.
55n+1-55n chia hết cho 54
= 55n.(551-1)
= 55n.54 chia hết cho 54
=> 55^n+1 -55^n chia hết cho 54 ( với mọi n thuộc N)
55^n+1 - 55^n=55^n x 55 -55^n=55^n(55-1)=55^n x 54 vậy luôn chia hết cho 54
k mk nha
\(55^{n+1}-55^n=55^n\left(55-1\right)=55^n\times54\)chia hết cho 54 với \(n\in N\)
\(55^{n+1}-55^n\)
\(=55^n.55-55^n.1\)
\(=55^n.\left(55-1\right)\)
\(=55^n.54\)
Vì có 54 trong tích
=> 55n . 54 chia hết cho 54
=> Điều phải chứng minh
55n+1−55n = 55n.55−55n = 55n(55−1)=(55n.54)⋮54
- Vậy (55n+1−55n)⋮54