K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2018

a, Ta có: IP\(\perp\)AD (GT)\(\Rightarrow\)\(\hept{\begin{cases}\widehat{P1}=90o\\\widehat{P2}=90o\end{cases}}\)(1)

                                       \(\Rightarrow\)\(\widehat{P1}=\widehat{P2}=90o\)

Xét \(\Delta IPA\)và \(\Delta IPD\) có:

AD=PD (GT)

\(\widehat{D1}=\widehat{D2}\)(CMT)

IP chung

=> \(\Delta\)IPA= \(\Delta\)IPD (c.g.c)

=> IA=ID (2 cạnh t/ư) (1)

Ta có: IQ\(\perp\)BC(GT)=> \(\hept{\begin{cases}\widehat{Q1}=90o\\\widehat{Q2}=90o\end{cases}}\)

                                   => \(\widehat{Q1}=\widehat{Q2}=90o\)

Xét \(\Delta IQB\) và \(\Delta IQC\)có:

QB=QC(GT)

\(\widehat{Q1}=\widehat{Q2}\)(cmt)

IQ chung

=> \(\Delta IQB=\Delta IQC\left(c.g.c\right)\)

\(\Rightarrow IB=IC\)(2 cạnh t/ư)

Xét \(\Delta AIB\) và \(\Delta DIC\)có:

IA=ID((cmt)

AB=DC(GT)

IB=IC(cmt)

=> \(\Delta AIB=\Delta DIC\left(c.c.c\right)\)

vừa ms làm bài này xog :) h lại có ng` hỏi

8 tháng 2 2018

b, Ta có: \(\Delta AIB=\Delta DIC\)(Theo a)

=>\(\widehat{BAI}=\widehat{D}\)(2 góc t/ư) (2)

Lại có \(\Delta IPA=\Delta IPD\)(chứng minh ở phần a)

=> \(\widehat{IAD}=\widehat{D}\)(2 góc t/ư) (3)

Từ (2)(3) => \(\widehat{BAI}=\widehat{IAD}\)(4)

Mà tia AI trong \(\widehat{BAC}\)

=> AI là pg \(\widehat{BAC}\)

21 tháng 12 2021

bài 2:

ta có: AB<AC<BC(Vì 3cm<4cm<5cm)

=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)

Bài 3:

*Xét tam giác ABC, có:

       góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)

hay góc A+60 độ +40 độ=180độ

  => góc A= 180 độ-60 độ-40 độ.

  => góc A=80 độ

Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)

        => BC>AC>AB( Các cạnh và góc đối diện trong tam giác)

15 tháng 2 2022

bài 2:

ta có: AB <AC <BC (Vì 3cm <4cm <5cm)

=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)

Bài 3:

*Xét tam giác ABC, có:

       góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)

hay góc A+60 độ +40 độ=180độ

  => góc A= 180 độ-60 độ-40 độ.

  => góc A=80 độ

Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)

        => BC>AC>AB( Các cạnh và góc đối diện trong tam giác)

HT mik làm giống bạn Dương Mạnh Quyết

1:

BC=15+20=35cm

AD là phân gíac

=>AB/BD=AC/CD

=>AB/3=AC/4=k

=>AB=3k; AC=4k

AB^2+AC^2=BC^2

=>25k^2=35^2

=>k=7

=>AB=21cm; AC=28cm

AH=21*28/35=16,8cm

\(AD=\dfrac{2\cdot21\cdot28}{21+28}\cdot cos45=12\sqrt{2}\left(cm\right)\)

2:

BC=căn 12^2+16^2=20cm

HB=AB^2/BC=12^2/20=7,2cm

HC=20-7,2=12,8cm

10 tháng 3 2019

( bạn tự vẽ hình)

a, xét tam giác ABE và tam giác ACE có:

AE chung

AB=AC (gt)

góc BAE=góc CAE( vì AE là tia phân giác của góc BAC)

=> tam giác ABE=tam giác ACE

b, vì tam giác ABE=tam giác ACE( cmt)=> BE=CE( 2 cạnh tương ứng)(1)

=> góc BEA=góc CEA ( 2 góc tương ứng)

mà 2 góc này kề bù

=> góc BEA=góc CEA= 180 độ : 2= 90 độ 

=> AE vuông góc với BC (2)

từ (1) và (2) ta có AE là đường trung trực của BC.

22 tháng 2 2020

a, xét tam giác ABE và tam giác ACE có:
AE chung
AB=AC (gt)
góc BAE=góc CAE( vì AE là tia phân giác của góc BAC)
=> tam giác ABE=tam giác ACE
b, vì tam giác ABE=tam giác ACE( cmt)=> BE=CE( 2 cạnh tương ứng)(1)
=> góc BEA=góc CEA ( 2 góc tương ứng)
mà 2 góc này kề bù
=> góc BEA=góc CEA= 180 độ : 2= 90 độ 
=> AE vuông góc với BC (2)
từ (1) và (2) ta có AE là đường trung trực của BC.

a: Xét ΔADB và ΔADE có

AD chung

\(\widehat{BAD}=\widehat{EAD}\)

AB=AE

Do đó: ΔADB=ΔADE

b: Ta có: ΔADB=ΔADE

=>\(\widehat{ABD}=\widehat{AED}\)

=>\(\widehat{ABC}=\widehat{AEF}\)

Xét ΔEAF và ΔBAC có

\(\widehat{AEF}=\widehat{ABC}\)

AE=AB

\(\widehat{EAF}\) chung

Do đó: ΔEAF=ΔBAC

=>AF=AC

c: Ta có: AB+BF=AF

AE+EC=AC

mà AB=AE và AF=AC

nên BF=EC

Ta có: \(\widehat{ABD}+\widehat{FBD}=180^0\)(hai góc kề bù)

\(\widehat{AED}+\widehat{CED}=180^0\)(hai góc kề bù)

mà \(\widehat{ABD}=\widehat{AED}\)

nên \(\widehat{FBD}=\widehat{CED}\)

Ta có: ΔABD=ΔAED

=>DB=DE

Xét ΔDBF và ΔDEC có

DB=DE

\(\widehat{DBF}=\widehat{DEC}\)

BF=EC

Do đó: ΔDBF=ΔDEC

22 tháng 7 2021

1.

a. Ta có: \(AB^2+AC^2=6^2+8^2=36+64=100\)

\(BC^2=10^2=100\)

 \(\Rightarrow AB^2+AC^2=BC^2\) \(\Rightarrow\Delta\)ABC vuông tại A

b. \(\Delta\)ABC vuông tại A, đường cao AH. Ta có:

AB.AC = AH.BC

hay 6.8 = AH.10

=> AH = \(\dfrac{6.8}{10}=4.8\)