Bài ! Cho tam giác ( AB <AC ) Trên tia đối của tia CA lấy D sao cho CD=AB . Gọi I là giao điểm của các đường trung trực của BC và AD
a) C/m : Tam giác AIB = tam giác DIC
b) C/m AI là p/g của góc BAC
c) Kẻ IE vuông AB . CM : AE =1/2 AD
AI LÀM ĐC GIÚP MK VỚI MAI MINK PHẢI NỘP BÀI ÒI *********
a, Ta có: IP\(\perp\)AD (GT)\(\Rightarrow\)\(\hept{\begin{cases}\widehat{P1}=90o\\\widehat{P2}=90o\end{cases}}\)(1)
\(\Rightarrow\)\(\widehat{P1}=\widehat{P2}=90o\)
Xét \(\Delta IPA\)và \(\Delta IPD\) có:
AD=PD (GT)
\(\widehat{D1}=\widehat{D2}\)(CMT)
IP chung
=> \(\Delta\)IPA= \(\Delta\)IPD (c.g.c)
=> IA=ID (2 cạnh t/ư) (1)
Ta có: IQ\(\perp\)BC(GT)=> \(\hept{\begin{cases}\widehat{Q1}=90o\\\widehat{Q2}=90o\end{cases}}\)
=> \(\widehat{Q1}=\widehat{Q2}=90o\)
Xét \(\Delta IQB\) và \(\Delta IQC\)có:
QB=QC(GT)
\(\widehat{Q1}=\widehat{Q2}\)(cmt)
IQ chung
=> \(\Delta IQB=\Delta IQC\left(c.g.c\right)\)
\(\Rightarrow IB=IC\)(2 cạnh t/ư)
Xét \(\Delta AIB\) và \(\Delta DIC\)có:
IA=ID((cmt)
AB=DC(GT)
IB=IC(cmt)
=> \(\Delta AIB=\Delta DIC\left(c.c.c\right)\)
vừa ms làm bài này xog :) h lại có ng` hỏi
b, Ta có: \(\Delta AIB=\Delta DIC\)(Theo a)
=>\(\widehat{BAI}=\widehat{D}\)(2 góc t/ư) (2)
Lại có \(\Delta IPA=\Delta IPD\)(chứng minh ở phần a)
=> \(\widehat{IAD}=\widehat{D}\)(2 góc t/ư) (3)
Từ (2)(3) => \(\widehat{BAI}=\widehat{IAD}\)(4)
Mà tia AI trong \(\widehat{BAC}\)
=> AI là pg \(\widehat{BAC}\)