K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2016

\(x^2+y^2\le x+y\Leftrightarrow\left(2x-1\right)^2\le-4y^2+4y+1\text{ (1)}\)

+Nếu \(-4y^2+4y+1< 0\) thì (1) có \(VT\ge0>VP\), (1) ko thỏa --> loại.

+Nếu \(-4y^2+4y+1=0\Leftrightarrow y=\frac{1+\sqrt{2}}{2}\text{ }\left(do\text{ }y>0\right)\) thì\(\left(2x-1\right)^2\le0\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)

\(A=x+3y=2+\frac{3}{\sqrt{2}}\approx4.12\)

+Xét \(-4y^2+4y+1>0\Leftrightarrow\frac{1-\sqrt{2}}{2}< y< \frac{1+\sqrt{2}}{2}\)

\(\Rightarrow0< y< \frac{1+\sqrt{2}}{2}\approx1.207\)

\(\left(1\right)\Leftrightarrow-\sqrt{-4y^2+4y+1}\le2x-1\le\sqrt{-4y^2+4y+1}\)

\(\Rightarrow2x\le\sqrt{2-\left(2y-1\right)^2}+1\)

\(2A=2x+6y\le\sqrt{2-\left(2y-1\right)^2}+3\left(2y-1\right)+1+3\)

Áp dụng bđt Bu-nhia-cop-xki

\(1.\sqrt{2-\left(2y-1\right)^2}+3.\left(2y-1\right)\le\sqrt{1^2+3^2}.\sqrt{2-\left(2y-1\right)^2+\left(2y-1\right)^2}=2\sqrt{5}\)

Dấu bằng xảy ra khi \(\frac{1}{3^2}=\frac{2-\left(2y-1\right)^2}{\left(2y-1\right)^2}\Leftrightarrow\left(2y-1\right)^2=\frac{9}{5}\)

\(\Leftrightarrow2y-1=\pm\frac{3}{\sqrt{5}}\Leftrightarrow\orbr{\begin{cases}y=\frac{3}{2\sqrt{5}}+\frac{1}{2}\approx1.17\in\left(0;\frac{1+\sqrt{2}}{2}\right)\\y=-\frac{3}{2\sqrt{5}}+\frac{1}{2}< 0\end{cases}}\)

\(\Rightarrow2A\le4+2\sqrt{5}\)

\(\Rightarrow A\le2+\sqrt{5}\approx4.23\)

Dấu bằng xảy ra khi \(\hept{\begin{cases}y=\frac{3}{2\sqrt{5}}+\frac{1}{2}\\x=\frac{1+\sqrt{2-\left(2y-1\right)^2}}{2}=\frac{1}{2\sqrt{5}}+\frac{1}{2}\end{cases}}\)

12 tháng 8 2016

.Điểm rơi \(x=y=1\)

\(A\le4\)

Kết thúc chứng minh.

31 tháng 12 2021

\(c,P=\dfrac{x^2-x^2+8xy-16y^2}{x^2+4y^2}=\dfrac{8\left(\dfrac{x}{y}\right)-16}{\left(\dfrac{x}{y}\right)^2+4}\)

Đặt \(\dfrac{x}{y}=t\)

\(\Leftrightarrow P=\dfrac{8t-16}{t^2+4}\Leftrightarrow Pt^2+4P=8t-16\\ \Leftrightarrow Pt^2-8t+4P+16=0\)

Với \(P=0\Leftrightarrow t=2\)

Với \(P\ne0\Leftrightarrow\Delta'=16-P\left(4P+16\right)\ge0\)

\(\Leftrightarrow-P^2-4P+4\ge0\Leftrightarrow-2-2\sqrt{2}\le P\le-2+2\sqrt{2}\)

Vậy \(P_{max}=-2+2\sqrt{2}\Leftrightarrow t=\dfrac{4}{P}=\dfrac{4}{-2+2\sqrt{2}}=2+\sqrt{2}\)

\(\Leftrightarrow\dfrac{x}{y}=2+2\sqrt{2}\)

Bài a hình như sai đề rồi bạn.

undefined

12 tháng 8 2016

Sao không ai giúp hết vậy!

NV
12 tháng 4 2020

Câu 2:

\(A-4=2x+3y\Rightarrow\left(A-4\right)^2=\left(2x+3y\right)^2\)

\(\left(A-4\right)^2\le\left(2^2+3^2\right)\left(x^2+y^2\right)=676\)

\(\Rightarrow-26\le A-4\le26\)

\(\Rightarrow-22\le A\le30\)

\(A_{max}=30\) khi \(\left\{{}\begin{matrix}x=4\\y=6\end{matrix}\right.\)

\(A_{min}=-22\) khi \(\left\{{}\begin{matrix}x=-4\\y=-6\end{matrix}\right.\)

NV
12 tháng 4 2020

\(2x+3y=1\Rightarrow y=\frac{1-2x}{3}\)

Do \(x;y\ge0\Rightarrow0\le x\le\frac{1}{2}\)

\(A=x^2+3\left(\frac{1-2x}{3}\right)^2=x^2+\frac{1}{3}\left(4x^2-4x+1\right)=\frac{7}{3}x^2-\frac{4}{3}x+\frac{1}{3}\)

\(A=\frac{7}{3}\left(x-\frac{2}{7}\right)^2+\frac{1}{7}\ge\frac{1}{7}\)

\(\Rightarrow A_{min}=\frac{1}{7}\) khi \(x=\frac{2}{7};y=\frac{1}{7}\)

Mặt khác \(A=\frac{1}{3}x\left(7x-4\right)+\frac{1}{3}\)

Do \(x\le\frac{1}{2}\Rightarrow7x-4< 0\Rightarrow x\left(7x-4\right)\le0\)

\(\Rightarrow A\le\frac{1}{3}\Rightarrow A_{max}=\frac{1}{3}\) khi \(x=0;y=\frac{1}{3}\)

NV
22 tháng 9 2019

\(A^2=\left(2x+3y\right)^2\le\left(2^2+3^2\right)\left(x^2+y^2\right)=13^2\)

\(\Rightarrow A\le13\Rightarrow A_{max}=13\) khi \(\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)