K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2017

Bài 1:

\(a^2+b^2+c^2=16\Rightarrow\left(a+b+c\right)^2-2ab-2bc-2ac=16\)\(\Leftrightarrow-2\left(ab+bc+ac\right)=16\Rightarrow ab+bc+ac=-8\)\(\Rightarrow\left(ab+bc+ac\right)^2=64\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2=64\)\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)=64\)

\(\Rightarrow a^2b^2+b^2c^2+a^2c^2=64\)

Ta có:

\(a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2a^2b^2-2b^2c^2-2a^2c^2\)\(=16^2-2\left(a^2b^2+b^2c^2+a^2c^2\right)=256-2.64=128\)

3 tháng 10 2017

Fan sơn tùng là đây

AH
Akai Haruma
Giáo viên
4 tháng 7 2021

1. Không có dấu "=" em nhé.

Vì $a,b,c$ là độ dài 3 cạnh tam giác nên theo BĐT tam giác thì:

$a< b+c\Rightarrow a^2< ab+ac$

$b< a+c\Rightarrow b^2< ba+bc$

$c< a+b\Rightarrow c^2< ca+cb$

$\Rightarrow a^2+b^2+c^2< 2(ab+bc+ac)$ 

Ta có đpcm. 

AH
Akai Haruma
Giáo viên
4 tháng 7 2021

2.

$(x-1)(x-2)(x-3)(x-4)$

$=(x-1)(x-4)(x-2)(x-3)$

$=(x^2-5x+4)(x^2-5x+6)$

$=(x^2-5x+4)(x^2-5x+4+2)$

$=(x^2-5x+4)^2+2(x^2-5x+4)$

$=(x^2-5x+4)^2+2(x^2-5x+4)+1-1$

$=(x^2-5x+5)^2-1\geq 0-1=-1$ do $(x^2-5x+5)^2\geq 0$ với mọi $x\in\mathbb{R}$

Vậy ta có đpcm.

11 tháng 10 2015

ta có:\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)

tích của 3 tỉ số đã cho là \(\left(\frac{a+b+c}{b+c+d}\right)^3\) ,mặt khác tich đó cũng bằng \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a.b.c}{b.c.d}=\frac{a}{d}\)

vậy \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\) (đpcm)

**** đi

26 tháng 12 2017

a)Ta có 7x=2y

Suy ra:\(\dfrac{x}{\dfrac{1}{7}}\)=\(\dfrac{y}{\dfrac{1}{2}}\)

Và x-y=16

Áp dụng công thức của dãy tỉ số bằng nhau,ta có:

\(\dfrac{x}{\dfrac{1}{7}}\)=\(\dfrac{y}{\dfrac{1}{2}}\)=\(\dfrac{x-y}{\dfrac{1}{7}-\dfrac{1}{2}}\)=\(\dfrac{16}{\dfrac{-5}{14}}\)=\(\dfrac{-224}{5}\)

Từ \(\dfrac{x}{\dfrac{1}{7}}=\dfrac{-224}{5}\)suy ra :x=\(\dfrac{-224}{5}\cdot\dfrac{1}{7}\)=\(-\dfrac{32}{5}\)

\(\dfrac{y}{\dfrac{1}{2}}=-\dfrac{224}{5}\)suy ra:y=\(-\dfrac{224}{5}\cdot\dfrac{1}{2}=-\dfrac{112}{5}\)

27 tháng 12 2017

c)Ta có :\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\)

Mà a+2b-c=-20

Suy ra:\(\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{c}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ,ta có:

\(\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{c}{4}=\dfrac{a+2b-c}{2+6-4}=-\dfrac{20}{4}=-5\)

Từ \(\dfrac{a}{2}=-5,suyra:a=-5\cdot2=-10\)

\(\dfrac{b}{3}=-5,suyra:b=-5\cdot3=-15\)

\(\dfrac{c}{4}=-5,suyra:c=-5\cdot4=-20\)

Vậy a=-10,b=-15,c=-20

5 tháng 10 2021

Bài 2: 

b: Ta có: \(x\left(x+4\right)\left(x-4\right)-\left(x^2+1\right)\left(x^2-1\right)\)

\(=x^3-4x-x^4+1\)

\(=-x^4+x^3-4x+1\)

c: Ta có: \(\left(a+b-c\right)^2-\left(a-c\right)^2-2ab+2ab\)

\(=\left(a+b-c-a+c\right)\left(a+b-c+a-c\right)\)

\(=b\left(2a+b-2c\right)\)

\(=2ab+b^2-2bc\)

22 tháng 7 2018

\(x^2=a^2+b^2+ab\)

\(\Leftrightarrow x^4=a^4+b^4+a^2b^2+2a^2b^2+2ab^3+2a^3b\)

\(\Leftrightarrow2x^4=2a^4+2b^4+6a^2b^2+4ab^3+4a^3b\)

\(\Leftrightarrow2x^4=a^4+b^4+\left(a^2\right)^2+\left(b^2\right)^2+\left(2ab\right)^2+2a^2b^2+2b^2.2ab+2.2ab.a^2\)

\(\Leftrightarrow2x^4=a^4+b^4+\left(a^2+b^2+2ab\right)^2\)

\(\Leftrightarrow2x^4=a^4+b^4+\left[\left(a+b\right)^2\right]^2\)

\(\Leftrightarrow2x^4=a^4+b^4+c^4\left(đpcm\right)\)