Tính tổng 4/1.3+4/3.5+4/5.7+4/7.9+4/9.11+.....+4/2013.2015
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{4}{1.3}\)+\(\frac{4}{3.5}\)+\(\frac{4}{5.7}\)+\(\frac{4}{7.9}\)+...+\(\frac{4}{2011.2013}\)
= 1+\(\frac{1}{3}\)-\(\frac{1}{3}\)+\(\frac{1}{5}\)-\(\frac{1}{5}\)+\(\frac{1}{7}\)-\(\frac{1}{7}\)+\(\frac{1}{9}\)+...+\(\frac{1}{2011}\)+\(\frac{1}{2013}\)
=1+ 0 + 0 + 0 +...+ 0 + \(\frac{1}{2013}\)
=1+\(\frac{1}{2013}\)
=\(\frac{2014}{2013}\)
k dùm nha
\(\frac{4}{1\cdot3}+\frac{4}{3\cdot5}+\frac{4}{5\cdot7}+...+\frac{4}{2011\cdot2013}\)
\(=2\cdot\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{2011\cdot2013}\right)\)
\(=2\cdot\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2011}-\frac{1}{2013}\right)\)
\(=2\cdot\left(1-\frac{1}{2013}\right)\)
\(=2\cdot\frac{2012}{2013}\)
\(=\frac{4024}{2013}\)
\(S=\dfrac{2}{1\times3}+\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+\dfrac{2}{7\times9}+\dfrac{2}{9\times11}\)
\(=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}\)
\(=\dfrac{1}{1}-\dfrac{1}{11}=\dfrac{11}{11}-\dfrac{1}{11}=\dfrac{10}{11}\)
\(\frac{1}{2}-\frac{1}{1.3}-\frac{1}{3.5}-\frac{1}{5.7}-\frac{1}{7.9}-\frac{1}{9.11}=\frac{4}{5}-x\)
<=> \(2.\frac{1}{2}-\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right)=\frac{8}{5}-2x\)
<=> \(1-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\right)=\frac{8}{5}-2x\)
<=> \(1-\left(1-\frac{1}{11}\right)-\frac{8}{5}=-2x\)
<=> \(-\frac{83}{55}=-2x\)
<=> \(x=\frac{83}{110}\)
a)\(=\frac{3}{2}\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2013}-\frac{1}{2015}\right)\)
\(=\frac{3}{2}\left(\frac{1}{5}-\frac{1}{2015}\right)\)
\(=\frac{3}{2}\cdot\frac{402}{2015}\)
\(=\frac{603}{2015}\)
b)\(=\frac{4}{5}\left(\frac{1}{3}-\frac{1}{8}+\frac{1}{8}-\frac{1}{13}+...+\frac{1}{93}-\frac{1}{98}\right)\)
\(=\frac{4}{5}\left(\frac{1}{3}-\frac{1}{98}\right)\)
\(=\frac{4}{5}\cdot\frac{95}{294}\)
\(=\frac{38}{147}\)
a) Gọi tổng trên là A
A = \(\frac{3}{5.7}+\frac{3}{7.9}+\frac{3}{9.11}+...+\frac{3}{2013.2015}\)
A == \(\frac{3}{5}-\frac{3}{7}+\frac{3}{7}-\frac{3}{9}+\frac{3}{9}-\frac{3}{11}+...+\frac{3}{2013}-\frac{3}{2015}\)
Vì một số trừ cho a rồi cộng cho a sẽ bằng chính số đó nên:
A = \(\frac{3}{5}-\frac{3}{2015}\)
A = \(\frac{1209}{2015}-\frac{3}{2015}\)
A = \(\frac{1206}{2015}\)
b) Gọi tổng trên là B
B = \(\frac{4}{3.8}+\frac{4}{8.13}+\frac{4}{13.15}+...+\frac{4}{93.98}\)
B = \(\frac{4}{3}-\frac{4}{8}+\frac{4}{8}-\frac{4}{13}+\frac{4}{13}-\frac{4}{15}+...+\frac{4}{93}-\frac{4}{98}\)
Vì một số trừ cho a rồi cộng cho a sẽ bằng chính số đó nên:
B = \(\frac{4}{3}-\frac{4}{98}\)
B = \(\frac{686}{294}-\frac{12}{294}\)
B = \(\frac{674}{294}=\frac{337}{147}\)
4/3.5+4/5.7+4/7.9+4/9.11
=4.(1/3.5+1/5.7+1/7.9+1/9.11)
=4.1/2.(2/3.5+2/5.7+2/7.9+2/9.11)
=2.(1/3-1/5+1/5-1/7+1/7-1/9+1/9-1/11)
=2.(1/3-1/11)
=2.8/33
=16/33
4/3.5+4/5.7+4/7.9+4/9.11
=4.2/2.3.5+4.2/2.5.7+4.2/2.7.9+4.2/2.9.11
=4/2.2/3.5+4/2.2/5.7+4/2.2/7.9+4/2.2/9.11
=4/2.(2/3.5+2/5.7+2/7.9+2/9.11)
=4/2.(1/3-1/5+1/5-1/7+1/7-1/9+1/9-1/11)
=2.(1/3-1/11)
=2.8/33
=16/33
\(\frac{4}{1.3}+\frac{4}{3.5}+...+\frac{4}{2013.2015}=2.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{2013.2015}\right)=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2015}\right)\)
\(=2.\left(\frac{2015}{2015}-\frac{1}{2015}\right)\)
\(=2.\frac{2014}{2015}\)
\(=\frac{4028}{2015}\)