Cho 2^n+1 là số nguyên tố (n>2). Chứng minh 2^n-1 là hợp số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Nếu $n$ lẻ thì:
$2^n+1\equiv (-1)^n+1\equiv -1+1\equiv 0\pmod 3$
Hay $2^n+1\vdots 3$
Mà $2^n+1>3$ với $n>2$ nên $2^n+1$ không là snt (trái giả thiết)
Do đó $n$ chẵn.
Với $n$ chẵn thì:
$2^n-1\equiv (-1)^n-1\equiv 1-1\equiv 0\pmod 3$
Mà $2^n-1>3$ với $n>2$ nên $2^n-1$ là hợp số.
Theo bài ra, ta có: \(n>2\Rightarrow2^n+1>2^2+1=5\)
\(n>2\Rightarrow2^n-1>2^2-1=4\)
Ta có: \(\left(2^n+1\right)+\left(2^n-1\right)=2.2^n=2^{n+1}⋮2\)
Mà \(\left(2^n+1;2\right)=1\Rightarrow2^{n-1}⋮2\)
Lại có \(2^n-1>4\)
\(\Rightarrow2^n-1\)là hợp số
=> đpcm
2n>22=4>3 (vì n>2)
=>2n=3k+1;3k+2
xét 2n=3k+2 =>2n+1=3k+3=3(k+1) chia hết cho 3
=>2n+1 là hợp số (trái giả thuyết)
=>2n=3k+1
=>2n-1=3k+1-1=3k chia hết cho 3
=>2n-1 là hợp số
=>đpcm
Ta có: 2^n+1;2^n;2^n-1 là 3 số tự nhiên liên tiếp
=>một trong 3 số trên chia hết cho 3
mà 2^n+1 là số nguyên tố(n>2)=>2^n+1 ko chia hết cho 3
mặt khác: 2^n ko chia hết cho 3
=>2^n-1 chia hết cho 3
K MIK NHA BN !!!!!!
B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1
* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số
* xét p nguyên tố khác 3 => 8p không chia hết cho 3
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3
=> (8p-1)(8p+1) chia hết cho 3
Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số
B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1)
* Xét k = 1
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2)
* Xét k lẻ mà k > 1
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn
=> k + 1 là hợp số
=> Dãy số không có nhiều hơn 2 số nguyên tố (3)
* Xét k chẵn , khi đó k >= 2
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn
=> k + 2 và k + 10 là hợp số
=> Dãy số không có nhiều hơn 1 số nguyên tố (4)
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất
B3:Số 36=(2^2).(3^2)
Số này có 9 ước là:1;2;3;4;6;9;12;18;36
Số tự nhiên nhỏ nhất có 6 ước là số 12.
Cho tập hợp ước của 12 là B.
B={1;2;3;4;6;12}
K MIK NHA BN !!!!!!
với n>2 => (n-1)(n+1) <>0
vì (n-1)*n*(n+1) luôn chia hết cho 3 (3 số tự nhiên liên tiếp)
n không chia hết cho 3 => (n-1) hoặc (n+1) phải chia hết cho 3
=> n^2-1=(n-1)(n+1) phải chia hết cho 3=>dpcm
với n>2 => (n-1)(n+1) <>0
vì (n-1)*n*(n+1) luôn chia hết cho 3 (3 số tự nhiên liên tiếp)
n không chia hết cho 3 => (n-1) hoặc (n+1) phải chia hết cho 3
=> n^2-1=(n-1)(n+1) phải chia hết cho 3=>dpcm
vì \(2^n+1\)là số nguyên tố >2 nên các số nguyên tố khác lẻ nên \(2^n-1\) là hợp số