2n+1 chia hết cho 6-n
3n chia hết cho n-1
n+22 chia hết cho n+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
S = n n 4 + 5 n 3 + 5 n 2 − 5 n − 6 = n [ n 2 − 1 n 2 + 6 + 5 n n 2 − 1 ] = n ( n 2 − 1 ) ( n 2 + 5 n + 6 ) = n ( n − 1 ) ( n + 1 ) ( n + 2 ) ( n + 3 ) = ( n − 1 ) n ( n + 1 ) ( n + 2 ) ( n + 3 )
Ta có S là tích của 5 số nguyên tự nhiên liên tiếp chia hết cho 5! nên chia hết cho 120.
a) 2n + 1 chia hết cho 6 - n
Ta có : 6 - n = -(n - 6)
=> 2n + 1 chia hết cho n - 6
=> 2(n - 6) + 13 chia hết cho n - 6
=> 13 chia hết cho n - 6
=> n - 6 thuộc {1 ; 13}
=> 6 - n thuộc {-1 ; -13}
=> n thuộc {7 ; 19}
n + 22 chia hết cho n + 1
=> (n + 1) + 21 chia hết cho n + 1
=> 21 chia hết cho n + 1
=> n + 1 thuộc {1 ; 3 ; 7 ; 21}
=> n thuộc {0 ; 2 ; 6 ; 20}
a) Ta có: \(3n-1⋮n+3\)
\(\Leftrightarrow3n+9-10⋮n+3\)
mà \(3n+9⋮n+3\)
nên \(-10⋮n+3\)
\(\Leftrightarrow n+3\inƯ\left(-10\right)\)
\(\Leftrightarrow n+3\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)
hay \(n\in\left\{-2;-4;-1;-5;2;-8;7;-13\right\}\)
Vậy: \(n\in\left\{-2;-4;-1;-5;2;-8;7;-13\right\}\)
a) (n+2) \(⋮\) (n-1)
vì (n-1)\(⋮\) (n-1)
=>(n+2)-(n-1)\(⋮\left(n-1\right)\)
=>(n+2-n+1)\(⋮\) (n-1)
=> 3\(⋮\) (n-1)
=>(n-1)\(\in\) Ư(3) = { \(\pm\)1,\(\pm\)3}
ta có bảng
n-1 | -1 | 1 | -3 |
3 |
n | 0 | 2 | -2 | 4 |
loại |
vậy n\(\in\) { 0;2;4}
b) \(\left(2n+7\right)⋮\left(n+1\right)\)
vì\(\left(n+1\right)⋮\left(n+1\right)\)
=>\(2\left(n+1\right)⋮\left(n+1\right)\)
=> \(\left(2n+2\right)⋮\left(n+1\right)\)
=>\(\left(2n+7\right)-\left(2n+2\right)⋮\left(n+1\right)\)
=>\(\left(2n+7-2n-2\right)⋮\left(n+1\right)\)
=>\(5⋮\left(n+1\right)\)
=> \(\left(n+1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
TA CÓ BẢNG
n+1 | -5 | -1 | 1 | 5 |
n | -6 | -2 | 0 | 4 |
loại | loại |
vậy \(n\in\left\{0;4\right\}\)
a) 2n - 1 chia hết cho n + 1
=> 2n + 2 - 3 chai hết cho n + 1
=> 2.(n + 1) - 3 chia hết cho n + 1
=> 3 chai hết cho n + 1
=> n + 1 thuộc Ư(3) = {-1;1-3;3}
=> n = {-2;0;-4;2}
2n-1 chia hết cho n+1
=>2(n+1)-3 chia hết n+1
=>3 chia hết cho n-1
=>n-1 thuộc Ư(3)={1;3;-1;-3}
Với n-1=1 =>n=2
Với n-1=3 =>n=4 (loại)
Với n-1=(-1) =>n=0
Với Với n-1=(-3) =>n=(-2)
a) n + 2 chia hết cho n - 1
=> n - 1 + 3 chia hết cho n - 1
Do n - 1 chia hết cho n - 1 => 3 chia hết cho n - 1
Mà n thuộc N => n - 1 > hoặc = -1
=> n - 1 thuộc {-1 ; 1 ; 3}
=> n thuộc {0 ; 2 ; 4}
Những câu còn lại lm tương tự
Giải:
a) \(n+2⋮n-1\)
\(\Rightarrow\left(n-1\right)+3⋮n-1\)
\(\Rightarrow3⋮n-1\)
\(\Rightarrow n-1\in\left\{\pm1;\pm3\right\}\)
+) \(n-1=1\Rightarrow n=2\)
+) \(n-1=-1\Rightarrow n=0\)
+) \(n-1=3\Rightarrow n=4\)
+) \(n-1=-3\Rightarrow n=-2\)
Vậy \(n\in\left\{2;0;4;-2\right\}\)
b) \(2n+7⋮n+1\)
\(\Rightarrow\left(2n+2\right)+5⋮n+1\)
\(\Rightarrow2\left(n+1\right)+5⋮n+1\)
\(\Rightarrow5⋮n+1\)
\(\Rightarrow n+1\in\left\{\pm1;\pm5\right\}\)
+) \(n+1=1\Rightarrow n=0\)
+) \(n+1=-1\Rightarrow n=-2\)
+) \(n+1=3\Rightarrow n=2\)
+) \(n+1=-3\Rightarrow n=-4\)
Vậy \(n\in\left\{0;-2;2;-4\right\}\)