K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 6

Lời giải:

$207\equiv -1\pmod {13}$

$\Rightarrow 207^{2016}\equiv (-1)^{2016}\equiv 1\pmod {13}$

Vậy $207^{2016}$ chia $13$ dư $1$

3 tháng 3 2016

A chia 7 dư 6=> A-6 chia hết cho 7=>A +36 chia hết cho 7(1)

A chia 13 dư 3=>A-3 chia hết cho 13=> A +36 chia hết cho 13(2)

Từ(1)(2)=>A+36 chia hết cho 7 và 13=>A thuộc bội chung của 7 và 13

Mà UCLN(7;13)=1 => A+36 thôucj bội của 7x13=91=>Achia 91 dư :91-36=55

26 tháng 1 2018

lớp 8 thì chịu

26 tháng 1 2018

xin lỗi bạn nha ,số to quá mk ko chia đc

26 tháng 1 2018

Có : 3^2003 = 3^2001.3^2 = (3^3)^667.9 = 27^667.9 = 27^667.9-9+9=9.(27^667-1)+9

Ta thấy 27^667-1 = 27^667-1^667 chia hết cho 27-1=26

=> 27^667-1 chia hết cho 13

=> 3^2003 chia 13 dư 9

Tk mk nha

16 tháng 9 2016

\(3^{2016}\equiv1^{2016}\)

mà \(1^{2016}\)chia 13 dư 1

nên 3^2016 : 13 dư 1

14 tháng 3 2018

gọi số tự nhiên đó là a.

theo bài ra ta có :

a = 7t + 5 (t thuộc N)

a=13k + 4 (k thuộc N)

do đó:

a+9 = (7t + 5) + 9 = 7t + 14 (chia hết cho 7)

a+9 = (13k + 4) + 9 = 13k + 13 (chia hết cho 13)

Mà 7 và 13 nguyên tố cùng nhau nên a+9 chia hết cho 7.13 = 91

Vậy: a+9 chia hết cho 91, suy ra a chia cho 91 có số dư là 91 - 9 = 82

1 tháng 2 2018

Có : 3^2003 = (3^2001).3^2 = (3^3)^667.9 = 27^667 . 9

Áp dụng tính chất a^n-b^n chia hết cho a-b với a,b,n thuộc N sao thì :

27^667.9 - 9 = 9.(27^667-1) = 9.(27^667-1^667) chia hết cho 27-1 = 26

Mà 26 chia hết cho 13 => 27^667.9-9 chia hết cho 13

=> 3^2003-9 chia hết cho 13

=> 3^2003 chia 13 dư 9

Tk mk nha

23 tháng 12 2023

B=3+3²+3³+..... +3¹00 

B=3²+3³+3⁴+... 3¹00+3

B=3²(1+3+3²) +... +3 98(1+3+3²) +3

B=3²•13+... +3 98•13+3

=) 3²•13+3 98•13 chia hết cho 13

=) Số dư là 3