K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔMC'A và ΔMBD' có

góc MC'A=góc MBD'

góc M chung

=>ΔMC'A đồng dạng với ΔMBD'

=>MC'/MB=MA/MD'

=>MC'*MD'=MA*MB

Xét ΔMAC và ΔMDB có

góc MAC=góc MDB

góc M chung

=>ΔMAC đồng dạng với ΔMDB

=>MA/MD=MC/MB

=>MA*MB=MD*MC

=>MD*MC=MC'*MD'

=>MD/MC'=MD'/MC

=>ΔMDD' đồng dạng với ΔMC'C

=>góc MDD'=góc MC'C

=>góc D'C'C+góc D'DC=180 độ

=>CDC'D' nội tiếp

18 tháng 5 2017

Giải bài 8 trang 134 SGK Toán 9 Tập 2 | Giải toán lớp 9

(O; R) và (O’; R’) tiếp xúc ngoài với nhau

⇒ OO’ = R + r.

O’A ⊥ BP, OB ⊥ BP ⇒ O’A // OB

⇒ ΔPAO’ Giải bài 7 trang 134 SGK Toán 9 Tập 2 | Giải toán lớp 9 ΔPBO

Giải bài 8 trang 134 SGK Toán 9 Tập 2 | Giải toán lớp 9

⇒ OB = 2.O'A hay R = 2.r

và OP = 2.O’P ⇒ O’P = OO’ = R + r = 3.r

ΔO’AP vuông tại A nên:

O ’ P 2   =   O ’ A 2   +   A P 2

⇔ ( 3 r ) 2 = r 2 + 4 2 ⇔ 8 r 2 = 16 ⇔ r 2 = 2

Diện tích hình tròn (O’; r) là:  S   =   π . r 2   =   2 π   ( c m 2 ) .

28 tháng 2 2017

Giải bài 8 trang 134 SGK Toán 9 Tập 2 | Giải toán lớp 9

(O; R) và (O’; R’) tiếp xúc ngoài với nhau

⇒ OO’ = R + r.

O’A ⊥ BP, OB ⊥ BP ⇒ O’A // OB

⇒ ΔPAO’ Giải bài 7 trang 134 SGK Toán 9 Tập 2 | Giải toán lớp 9 ΔPBO

Giải bài 8 trang 134 SGK Toán 9 Tập 2 | Giải toán lớp 9

⇒ OB = 2.O'A hay R = 2.r

và OP = 2.O’P ⇒ O’P = OO’ = R + r = 3.r

ΔO’AP vuông tại A nên:  O ' P 2 = O ' A 2 + A P 2

⇔ ( 3 r ) 2 = r 2 + 4 2 ⇔ 8 r 2 = 16 ⇔ r 2 = 2

Diện tích hình tròn (O’; r) là:  S = π · r 2 = 2 π cm 2

25 tháng 4 2017

Cho hai đường tròn (O; R) và (O'; r) tiếp xúc ngoài (R > r). Hai tiếp tuyến chung AB và A'B' của hai đường tròn (o),(O') cắt nhau tại P(A và A' thuộc đường tròn (O'), B và B' thuộc đường tròn (O)). Biết PA = AB = 4 cm. Tính diện tích hình tròn (O').

Hướng dẫn làm bài:

Vì AB là tiếp tuyến chung của (O) và (O’) nên OB ⊥ AB và O’A ⊥ AB

Xét hai tam giác vuông OPB và O’AP, ta có:

ˆA=ˆB=900A^=B^=900

ˆP1P1^ chung

Vậy ΔOBP ~ ∆ O’AP

⇒rR=PO′PO=PAPB=48=12⇒R=2r⇒rR=PO′PO=PAPB=48=12⇒R=2r

Ta có PO’ = OO’ = R + r = 3r (do AO’ là đường trung bình của ∆OBP)

Áp dụng định lí Py-ta-go trong tam giác vuông O’AP

O’P = O’A2 + AP2 hay (3r)2 = r2 + 42 ⇔ 9r2 = r2 + 16 ⇔ 8 r2 =16 ⇔ r2 = 2

Diện tích đường tròn (O’;r) là: S = π. r2 = π.2 = 2π (cm2)

25 tháng 4 2017

Vì AB là tiếp tuyến chung của (O) và (O’) nên OB ⊥ AB và O’A ⊥ AB

Xét hai tam giác vuông OPB và O’AP, ta có:

A^=B^=900

P1^ chung

Vậy ΔOBP ~ ∆ O’AP

⇒rR=PO′PO=PAPB=48=12⇒R=2r

Ta có PO’ = OO’ = R + r = 3r (do AO’ là đường trung bình của ∆OBP)

Áp dụng định lí Py-ta-go trong tam giác vuông O’AP

O’P = O’A2 + AP2 hay (3r)2 = r2 + 42 ⇔ 9r2 = r2 + 16 ⇔ 8 r2 =16 ⇔ r2 = 2

Diện tích đường tròn (O’;r) là: S = π. r2 = π.2 = 2π (cm2)

M.Bài 6.Cho hai đường tròn (O; R) và (O; R) tiếp xúc ngoài nhau tại M. Hai đường tròn (O) và (O) cùng tiếp xúc trong với đường tròn lớn (O; R) lần lượt tại E và F. Tính bán kính Rbiết chu vi tam giác OOOlà 20cm.Bài 7.Cho đường tròn (O; 9cm). Vẽ 6 đường tròn bằng nhau bán kính R đều tiếp xúc trong với (O) và mỗi đường tròn đều tiếp xúc với hai đường khác bên cạnh nó. Tính bán kính R.Bài 8.Cho...
Đọc tiếp

M.Bài 6.Cho hai đường tròn (O; R) và (O; R) tiếp xúc ngoài nhau tại M. Hai đường tròn (O) và (O) cùng tiếp xúc trong với đường tròn lớn (O; R) lần lượt tại E và F. Tính bán kính Rbiết chu vi tam giác OOOlà 20cm.

Bài 7.Cho đường tròn (O; 9cm). Vẽ 6 đường tròn bằng nhau bán kính R đều tiếp xúc trong với (O) và mỗi đường tròn đều tiếp xúc với hai đường khác bên cạnh nó. Tính bán kính R.

Bài 8.Cho hai đường tròn đồng tâm. Trong đường tròn lớn vẽ hai dây bằng nhau AB = CD và cùng tiếp xúc với đường tròn nhỏ tại M và N sao cho AB CD tại I. Tính bán kính đường tròn nhỏ biết IA = 3cm, IB = 9cm.

Bài 9.Cho ba đường tròn O O O1 2 3( ),( ),( )cùng có bán kính R và tiếp xúc ngoài nhau từng đôi một. Tính diện tích tam giác có ba đỉnh là ba tiếp điểm.

Bài 10.Cho hai đường tròn (O) và (O) tiếp xúc nhau tại A. Qua A vẽ một cát tuyến cắt đường tròn (O) tại B và cắt đường tròn (O) tại C. Từ B vẽ tiếp tuyến xyvới đường tròn (O). Từ C vẽ đường thẳng uv song song với xy. Chứng minh rằng uvlà tiếp tuyến của đường tròn (O).

Bài 11.Cho hình vuông ABCD. Vẽ đường tròn (D; DC) và đường tròn (O) đường kính BC, chúng cắt nhau tại một điểm thứ hai là E. Tia CE cắt AB tại M, tia BE cắt AD tại N. Chứng minh rằng:a) N là trung điểm của AD.b) M là trung điểm của AB.

Bài 12.Cho góc vuông xOy. Lấy các điểm I và K lần lượt trên các tia Oxvà Oy. Vẽ đường tròn (I; OK) cắt tia Oxtại M (I nằm giữa O và M). Vẽ đường tròn (K; OI) cắt tia Oytại N (K nằm giữa O và N).

a) Chứng minh hai đường tròn (I) và (K) luôn cắt nhau.

b) Tiếp tuyến tại M của đường tròn (I) và tiếp tuyến tại N của đường tròn (K) cắt nhau tại C. Chứng minh tứ giác OMCN là hình vuông.

c) Gọi giao điểm của hai đường tròn (I), (K) là A và B. Chứng minh ba điểm A, B, C thẳng hàng.d) Giả sử I và K theo thứ tự di động trên các tia Oxvà Oysao cho OI + OK = a(không đổi). Chứng minh rằng đường thẳng AB luôn đi qua một điểm cố định.

0

a: góc ABO+góc ACO=180 độ

=>ABOC nội tiếp

b: Xét (O) có

AB,AC là tiếp tuyến

=>AB=AC

mà OB=OC

nên OA là trung trực của BC

=>OA vuông góc BC tại H

=>AH*AO=AB^2

Xét ΔABE và ΔADB có

góc ABE=góc ADB

góc BAE chung

=>ΔABE đồng dạng với ΔADB

=>AB^2=AE*AD=AH*AO

9 tháng 5 2023

tớ cảm ơn nhiều nhee

a: góc BMA=góc CNA=90 độ

=>MB//NC

=>IK//MB//NC

=>IK vuông góc MN

góc AIK+góc AHK=90+90=180 độ

=>AHIK nội tiếp

b: ΔHMN đồng dạng với ΔABC

=>góc MHN=góc BAC cố định

\(S_{HMN}=\dfrac{1}{2}\cdot HM\cdot HN\cdot sin\widehat{MHN}< =\dfrac{1}{2}\cdot AB\cdot AC\cdot sin\widehat{BAC}\)

Dấu = xảy ra khi MH là đừog kính của (O) và NH là đường kính của (O')

11 tháng 1 2019

Giải bài 28 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 28 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 28 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

22 tháng 1 2019

Giải bài 28 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 28 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 28 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

Kiến thức áp dụng

Trong một đường tròn:

+ Số đo của góc nội tiếp bằng một nửa số đo của cung bị chắn.

+ Số đo của góc tạo bởi tiếp tuyến và dây cung bằng nửa số đo của cung bị chắn.