Cho p là số nguyên tố lớn hơn 3. Chứng minh rằng (p + 2015)(p + 2017) chia hết cho 24.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì p là số nguyên tố lớn hơn 3 nên p lẻ
=> p+2015 và p+2017 là 2 số chẵn liên tiếp
=> (p+2015)(p+2017) chia hết cho 8(1)
mặt khác p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 và 3k+2
Nếu p=3k+1 thì (p+2015)(p+2017)=(3k+1+2015)(3k+1+2017)=3(k+672)(3k+2018) chia hết cho 3=>(p+2015)(o+2017) chia hết cho 3(2)
Nếu p=3k+2 chứng minh tương tự ta đc (p+2015)(p+2017) chia hết cho 3(3)
Từ (1),(2),(3) => (p+20150(p+2017) chia hết cho 24
=> ĐPCM
tìm x sao cho 2x + 2x+1 + 2x+2 + 2x+3 + ... +2x+2015 = 22017 - 2
giải giúp mình với
Vì p nguyên tố > 3
=> p \(̸⋮\)3
=> p2 chia 3 dư 1 [vì số cp chia 3 dư 0,1]
Lại có: 2017 chia 3 dư 1
=> 2017 - p2 \(⋮3\)
Tương tự như trên, ta có:
p nguyên tố > 3
=> p lẻ và p không chia hết cho 8
=> p2 chia 8 dư 1 [vì số cp chia 8 dư 0,1,4 và p lẻ]
Lại có: 2017 chia 8 dư 1
=> 2017 - p2 \(⋮\)8
Mà UCLN của 3 và 8 là 1 => 2017-p2 \(⋮\)24
Giải:
Vì p là số nguyên tố lớn hơn a nên p là số lẻ
\(\Rightarrow\) ( p + 2015 ).( p + 2017 )\(⋮\)8 (1)
Vì p là số nguyên tố lớn hơn 3 nên p có dạng 3k + 1 và 3k + 2 ( k thuộc N* )
+) Với p = 3k + 1
\(\Rightarrow\) ( p + 2015 ).( p + 2017 ) = ( 3k + 2016 ).( 3k + 2018 ) \(⋮\)3 ( vì 3k\(⋮\)3; 2016\(⋮\)3 ở số đầu tiên ) (2)
+) Với p = 3k + 2
\(\Rightarrow\) ( p + 2015).(p + 2017 ) = ( 3k + 2017 ).( 3k + 2019 )\(⋮\)3 ( Vì 3k\(⋮\)3; \(2019⋮3\)nên số thứ 2 \(⋮3\)) (3)
Từ (1);(2) và (3) suy ra ( p + 2015).( p + 2017 )\(⋮\)24
\(\Rightarrowđpcm\)
nếu p là số nguyên tố lớn hơn 3 \(\Rightarrow\) p không chia hết cho 3
p2 không chia hết cho 3 ⇒ p2 không chia hết cho 24;
Vậy không tồn tại số nguyên tố nào thỏa mãn đề bài.
Vì p là số nguyên tố >3 nên p là số lẻ
→ 2 số p-2,p+1 là 2 số chẵn liên tiếp
→(p-2)(p+1) ⋮ cho 8 (1)
Vì p là số nguyên tố lớn hơn 3 nên
→ p=3k+1 hoặc p=3k+2 (k thuộc N*)
+)Với p=3k+1 → (p-2)(p+1)=3k(3k+2) ⋮ cho 3 (*)
+) Với p=3k+2 → (p-2)(p+1)=(3k-1).3.(k+1) ⋮ 3 (**)
Từ (*) và (**) →(p-2)(p+1) ⋮ 3 (2)
Vì (8;3)=1 → từ (1) và (2) => (p-2)(p+1) ⋮ 24
3) CM:p+1 chia hết cho 2
vì p lớn hơn 3 suy ra p là số lẻ và p+1 là số chẵn.
Vậy p+1 chia hết cho 2
CM:p+1 chia hết cho 3
Ta có:p x (p+1) x (p+2) chia hết cho 3(vì tích 3 số liên tiếp luôn chia hết cho 3)
Mà p và p+2 là số nguyên tố nên p và p+2 ko chia hết cho 3
Vậy p+1 chia hết cho 3
Mà ƯCLN(2,3) là 1
Vậy p+1 chia hết cho 2x3 là 6
Vậy p+1 chia hết cho 6 với mọi p lớn hơn 3 và p+2 cùng là số nguyên tố.
Vì p là số nguyên tố lớp hơn a nên p là số lẻ.
\(\Rightarrow\left(p+2015\right)\left(p+2017\right)⋮8\text{ }\) (1)
Vì p là số nguyên tố lớn hơn 3 nên p có dạng \(3k+1\) và \(3k+2\) \(\left(k\inℕ^∗\right)\)
+) Với \(p=3k+1\)
\(\Rightarrow\left(p+2015\right)\left(p+2017\right)=\left(3k+2016\right)\left(3k+2018\right)⋮3\) (Vì \(3k⋮3\text{ };\text{ }2016⋮3\) ở số đầu tiên) (2)
+) Với \(p=3k+2\)
\(\Rightarrow\left(p+2015\right)\left(p+2017\right)=\left(3k+2017\right)\left(3k+2019\right)⋮3\) (Vì \(3k⋮3\text{ };\text{ }2019⋮3\) nên số thứ hai chia hết cho 3 (3)
Từ (1) ; (2) và (3), suy ra \(\left(p+2015\right)\left(p+2017\right)⋮24\) (đpcm)