Cho 8 số tự nhiên có 3 chứ số. Chưng minh rằng trong đó tồn tại 2 số mà thì tạo thành 1 số có 6 chữ số chia hết cho 7. Giúp mk vs nhé, mk cảm ơn!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì một số chia hết cho 7 sẽ có số dư là 0, 1, 2, 3, 4, 5, 6. vậy trong 8 số tự nhiên bất kì sẽ có 2 số có cùng số dư khi chia cho 7
giả sử \(\overline{abc}\)và \(\overline{xyz}\) là hai số có 3 chữ số có cùng số dư khi chia cho 7,không mất tính tổng quát ta giả sử số dư đó là m với m thuộc từ 0 đến 6
khi đó: \(\overline{abc}\)=7k+mabc¯=7k+m và \(\overline{xyz}\)=7q+m
cần chứng minh: \(\overline{abcxyz}\)chia hết cho 7
thật vậy: ta có \(\overline{abcxyz}\)=\(\overline{abc}.100+\overline{xyz}=\left(7k+m\right)=7000k+7q+1001m\)
nhận xét: 7000k, 7q , 1001m đều chia hết cho 7 nên suy ra \(\overline{abcxyz}\)chia hết cho 7
Khi chia 8 số tự nhiên cho 7 thì mỗi số sẽ nhận 1 giá trị dư thuộc {1; 2; 3; 4; 5; 6}
Như vậy sẽ có 2 số khi chia có 7 có cùng số dư. Giả sử có 2 số A>B khi chia cho 7 có cùng số dư là a ta có
A=7m+a; B=7n+a => A-B = 7(m-n) chia hết cho 7
=> Trong 8 số có 3 chữ số, giả sử abc > def có cùng số dư => abc - def chia hết cho 7 theo cm ở trên. Khi viết liền nhau
abcdef = 1000.abc + def = 1001.abc - abc + def = 1001.abc - (abc - def)
=> 1001 chia hết cho 7 và abc - def chia hết cho 7 => abcdef chia hết cho 7 (dpcm)
giúp mình câu này với
B=2+2 mũ 2+2 mũ 3+2 mũ 4 +.......+2 mũ 99
Trong 14 số tự nhiên có 3 chữ số chắc chắn có 2 số chia cho 13 có cùng số dư
Nên hiệu của chúng chia hết cho 13
Gọi số có 6 chữ số chia hết cho 13 là abcdeg (có gạch trên đầu) thì abc-deg chia hết cho 13
Ta có: abcdeg + (abc-deg)
= abcdeg + abc-deg
= 1000.abc + deg + abc - deg
= (1000+1).abc + (deg-deg)
= 1001.abc + 0
= 1001.abc
Vì 1001 chia hết cho 13 nên 1001.abc cũng chia hết cho 13
=> abcdeg + (abc-deg) chia hết cho 13
Mà abc-deg chia hết cho 13
Nên abcdeg chia hết cho 13
Vây trong 14 số đó tồn tại 2 số mà khi viết liên nhau thì tạo thành số có 6 chữ số chia hết cho 13
Trong 14 số tự nhiên có 3 chữ số chắc chắn có 2 số chia cho 13 có cùng số dư
Nên hiệu của chúng chia hết cho 13
Gọi số có 6 chữ số chia hết cho 13 là abcdeg (có gạch trên đầu) thì abc-deg chia hết cho 13
Ta có: abcdeg + (abc-deg)
= abcdeg + abc-deg
= 1000.abc + deg + abc - deg
= (1000+1).abc + (deg-deg)
= 1001.abc + 0
= 1001.abc
Vì 1001 chia hết cho 13 nên 1001.abc cũng chia hết cho 13
=> abcdeg + (abc-deg) chia hết cho 13
Mà abc-deg chia hết cho 13
Nên abcdeg chia hết cho 13
Vây trong 14 số đó tồn tại 2 số mà khi viết liên nhau thì tạo thành số có 6 chữ số chia hết cho 13
chuc ban hoc tot nha -_-