Cho tam giác $A B C$. Gọi $\mathrm{M}, \mathrm{N}, \mathrm{P}$ lần lượt là trung điểm của $B C, C A, A B$. Chứng minh rằng a) $\overrightarrow{B M}+\overrightarrow{C N}+\overrightarrow{A P}=\overrightarrow{0}$ b) $\overrightarrow{A P}+\overrightarrow{A N}-\overrightarrow{A C}+\overrightarrow{B M}=\overrightarrow{0}$ c) $\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}=\overrightarrow{O M}+\overrightarrow{O N}+\overrightarrow{O P}$ với $O$ là điểm bất kì.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải thích các bước giải:
a) Kẻ đường kính BF.
Ta có: AH⊥BC,CF⊥BC⇒AH//CFAH⊥BC,CF⊥BC⇒AH//CF
Lại có AF⊥AB,CH⊥AB⇒AF//CHAF⊥AB,CH⊥AB⇒AF//CH
⇒AHCF⇒AHCF là hình bình hành.
⇒−−→AH=−−→FC⇒AH→=FC→.
Lại có OIOI là đường trung bình của tam giác BCF nên −→OI=12−−→FCOI→=12FC→
Vậy −−→AH=−−→FC=2−→OIAH→=FC→=2OI→.
b) Ta có: −−→OH=−−→OA+−−→AH=−−→OA+2−→OI=−−→OA+−−→OB+−−→OCOH→=OA→+AH→=OA→+2OI→=OA→+OB→+OC→
c) Do GG là trọng tâm tam giác ABC nên−−→OA+−−→OB+−−→OC=3−−→OG⇒−−→OG=13(−−→OA+−−→OB+−−→OC)=13−−→OHOA→+OB→+OC→=3OG→⇒OG→=13(OA→+OB→+OC→)=13OH→
Vậy ba điểm O,H,GO,H,G thẳng hàng.
a. Xét (O) , có:
CD \(\perp\)AB = {H}
=> \(\widehat{CHA}=90^o\Rightarrow\widehat{CHE}=90^o\)
Có: \(\widehat{CMD}\)là góc nội tiếp chắn nửa đường tròn đường kính CD
=> \(\widehat{CMD}=90^o\Rightarrow\widehat{CME}=90^o\)
Xét tứ giác CMEH, có:
\(\widehat{CME}+\widehat{CHE}=90^o+90^o=180^o\)
2 góc \(\widehat{CME}\)và \(\widehat{CHE}\)là 2 góc đối nhau
=> CMEH là tứ giác nội tiếp (đpcm)
Câu a: Có góc CHE=90 độ (vì CD\(\perp AB\) tại H)
Góc CMD =90 độ(góc nt chắn nửa đt)
Mà góc CHE và góc CMD ở vị trí đối nhau
⇒ Tứ giác CMEH nội tiếp
Câu b:
Xét \(\Delta NACva\Delta NMB\) có :
Góc N chung
Góc NCA = góc NBM (cùng chắn cung MA)
⇒ \(\Delta NAC\) đồng dạng \(\Delta NBM\) (góc góc)
⇒\(\dfrac{NM}{NA}\)=\(\dfrac{NB}{NC}\)⇔NM.NC=NA.NB
Câu c:
Có góc PMA=90 độ ( góc nt chắn nửa đt)→PM\(\perp\)AK
Mà IK\(\perp\)AK
⇒IK song song với MP (từ vuông góc đến song song
Nối A vs N
a)xét tg CEF có: N là t/đ của EF(gt) và A là t/đ của FC (vì C đx vs F qua A) => AN là đg trung bình của tg CEF
=> AN//CE và AN =1/2. CE
=> AN=1/2.BC(vì BC = CE) => AN =BM(vì BM = 1/2. BC)
xét tg ANMB có: AN=MB (cmt) và AN//MB ( vì AN// CE ; B,M,C,E thẳng hàng) => tg ANMB là hbh=> MN//AB và AB=MN (1) ;
xét tg AGD có: I là t/đ của AG (gt) và K là t/đ của DG(gt) => IK là đg trung bình của tg AGD => IK=1/2.AD và IK //AD
Mà B là t/đ của AD (vì A đx vs D qua B) => AB=BD=1/2.AD=> IK=AB ( =1/2.AD) (2)
Từ (1),(2)=> IK=MN
Ta có: MN// AB(cmt) ; B thuộc AD => MN//AD
Xét tg MNIK có: IK=MN (cmt) và IK//MN (cùng // AD)
=> tg MNIK là hbh (đpcm)
b) Do tg MNIK là hbh ( câu a) mà G là gđ của IM và KN nên G là t/đ của IM là KN
=> IG=MG và KG=NG
Mặt khác: I là t/đ của AG(gt)=> IG=AI=> AI=IG=GM
K là t/đ của DG(gt) => Dk=KG => DK=KG=GN
xét tg ABC có: AM là đg trung tuyến (gt) và AI=IG=GM (cmt) => G là trọng tâm của tg ABC (*)
xét tg DEF có: DN là đg trung tuyến (gt) và DK=KG=GN(cmt) => G là trọng tâm của tg DEF (**)
Từ (*),(**) => G vừa là trọng tam của tg ABC vừa là trọng tâm của tg DEF
=> Tg ABC và tg DEF có cùng trọng tâm là G (đpcm)
Nối A vs N
a)xét tg CEF có: N là t/đ của EF(gt) và A là t/đ của FC (vì C đx vs F qua A) => AN là đg trung bình của tg CEF
=> AN//CE và AN =1/2. CE
=> AN=1/2.BC(vì BC = CE) => AN =BM(vì BM = 1/2. BC)
xét tg ANMB có: AN=MB (cmt) và AN//MB ( vì AN// CE ; B,M,C,E thẳng hàng) => tg ANMB là hbh=> MN//AB và AB=MN (1) ;
xét tg AGD có: I là t/đ của AG (gt) và K là t/đ của DG(gt) => IK là đg trung bình của tg AGD => IK=1/2.AD và IK //AD
Mà B là t/đ của AD (vì A đx vs D qua B) => AB=BD=1/2.AD=> IK=AB ( =1/2.AD) (2)
Từ (1),(2)=> IK=MN
Ta có: MN// AB(cmt) ; B thuộc AD => MN//AD
Xét tg MNIK có: IK=MN (cmt) và IK//MN (cùng // AD)
=> tg MNIK là hbh (đpcm)
b) Do tg MNIK là hbh ( câu a) mà G là gđ của IM và KN nên G là t/đ của IM là KN
=> IG=MG và KG=NG
Mặt khác: I là t/đ của AG(gt)=> IG=AI=> AI=IG=GM
K là t/đ của DG(gt) => Dk=KG => DK=KG=GN
xét tg ABC có: AM là đg trung tuyến (gt) và AI=IG=GM (cmt) => G là trọng tâm của tg ABC (*)
xét tg DEF có: DN là đg trung tuyến (gt) và DK=KG=GN(cmt) => G là trọng tâm của tg DEF (**)
Từ (*),(**) => G vừa là trọng tam của tg ABC vừa là trọng tâm của tg DEF
=> Tg ABC và tg DEF có cùng trọng tâm là G (đpcm)
\(\overrightarrow{AN}=\frac{\overrightarrow{AB}+\overrightarrow{AC}}{2}=\frac{\overrightarrow{AB}}{2}+\frac{\overrightarrow{AC}}{2}=\overrightarrow{AM}+\overrightarrow{AP}\)
\(\overrightarrow{AN}=\frac{\overrightarrow{AB}+\overrightarrow{AC}}{2}\)
\(\overrightarrow{BP}=\frac{\overrightarrow{BA}+\overrightarrow{BC}}{2}\)
\(\overrightarrow{CM}=\frac{\overrightarrow{CB}+\overrightarrow{CA}}{2}\)
\(\Rightarrow\overrightarrow{AN}+\overrightarrow{BP}+\overrightarrow{CM}=\frac{\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{BA}+\overrightarrow{CA}+\overrightarrow{BC}+\overrightarrow{CB}}{2}=\overrightarrow{0}\)