Cho 3 số tự nhiên x,y,z thoả mãn x^2+y^2=z^2. CMR:x.y.z chia hết cho 15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+y^2+z^2-\left(x+y+z\right)=x\left(x-1\right)+y\left(y-1\right)+z\left(z-1\right)\)
có \(x\left(x-1\right),y\left(y-1\right),z\left(z-1\right)\)là các tích của hai số nguyên liên tiếp nên chia hết cho \(2\)do đó
\(\left(x+y+z\right)\equiv\left(x^2+y^2+z^2\right)\left(mod2\right)\)
\(\Rightarrow x+y+z⋮2\)(vì \(x^2+y^2+z^2⋮2\))
\(\Leftrightarrow x+7y+13z⋮2\).
Mà \(x+7y+13z>2\)(do \(x,y,z\)dương)
nên \(x+7y+13z\)là hợp số.
Ta có: \(x^3-x=\left(x-1\right)x\left(x+1\right)\)
Tích 3 số nguyên liên tiếp chia hết cho 3 nên \(\left(x-1\right)x\left(x+1\right)⋮3\)
hay \(x^3-x⋮3\)
Tương tự \(y^3-y⋮3\);\(z^3-z⋮3\)
\(\Rightarrow x^3+y^3+z^3-\left(x+y+z\right)⋮3\)
Mà \(\left(x+y+z\right)⋮3\left(gt\right)\Rightarrow a^3+b^3+c^3⋮3\left(đpcm\right)\)
Giả sử x;y⋮̸ 3
⇒x^2;y^2 chia 3 dư 1
⇒z^2=x^2+y^2 chia 3 dư 2 ( vô lý vì z^2 là số chính phương )
Vậy x⋮3y⋮3⇒xy⋮3
Chứng minh tương tự xy⋮4
(3;4)=1 => x.y chia hết cho 12