K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2016

thiếu đk \(\sqrt{ab}\ge1\)
chuyển vế tách VT rồi tương đương 

15 tháng 2 2020

Với a,b,c \(\ge\) 0, ta có:

\(BĐT\Leftrightarrow\frac{2}{a}+\frac{2}{b}+\frac{2}{c}-\frac{2}{\sqrt{ab}}-\frac{2}{\sqrt{bc}}-\frac{2}{\sqrt{ca}}\ge0\)

\(\Leftrightarrow\left(\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{b}}\right)^2+\left(\frac{1}{\sqrt{b}}-\frac{1}{\sqrt{c}}\right)^2+\left(\frac{1}{\sqrt{c}}-\frac{1}{\sqrt{a}}\right)^2\ge0\)(đúng)

4 tháng 12 2016

\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{ab+1}\)

\(\Leftrightarrow\left(\frac{1}{1+a^2}-\frac{1}{ab+1}\right)+\left(\frac{1}{1+b^2}-\frac{1}{1+ab}\right)\ge0\)

\(\Leftrightarrow\frac{ab-a^2}{\left(1+a^2\right)\left(ab+1\right)}+\frac{ab-b^2}{\left(1+b^2\right)\left(ab+1\right)}\ge0\)

\(\Leftrightarrow\frac{a\left(b-a\right)}{\left(1+a^2\right)\left(ab+1\right)}+\frac{b\left(a-b\right)}{\left(1+b^2\right)\left(ab+1\right)}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)}{ab+1}\left(\frac{b}{1+b^2}-\frac{a}{1+a^2}\right)\ge0\)

\(\Leftrightarrow\frac{a-b}{ab+1}.\frac{b+ba^2-a-ab^2}{\left(1+a^2\right)\left(1+b^2\right)}\ge0\)

\(\Leftrightarrow\frac{a-b}{ab+1}.\frac{ab\left(a-b\right)-\left(a-b\right)}{\left(1+a^2\right)\left(1+b^2\right)}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2\left(ab-1\right)}{\left(ab+1\right)\left(1+a^2\right)\left(1+b^2\right)}\ge0\)

Vì \(ab\ge1\) nên BĐT trên luôn đúng.

Vậy bđt ban đầu dc chứng minh . 

5 tháng 12 2016

thanks

7 tháng 10 2017

2/ GT <=> \(\left(a+b+c\right)abc\ge ab+bc+ca\)

\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{\left(a+b+c\right)^2}{ab+bc+ca}\ge\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)abc}=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)

Sao hôm thứ 7 nghỉ

NV
21 tháng 4 2019

a;b;c dương

\(A=\frac{b}{\sqrt{a}}+\frac{c}{\sqrt{b}}+\frac{a}{\sqrt{c}}+\frac{c}{\sqrt{a}}+\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{c}}\)

\(\Rightarrow A\ge\frac{\left(\sqrt{b}+\sqrt{c}+\sqrt{a}\right)^2}{\sqrt{a}+\sqrt{b}+\sqrt{c}}+\frac{\left(\sqrt{c}+\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)

\(\Rightarrow A\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{a}+\sqrt{b}+\sqrt{c}\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+3\sqrt[3]{\sqrt{abc}}=\sqrt{a}+\sqrt{b}+\sqrt{c}+3\)

Dấu "=" xảy ra khi \(a=b=c=1\)

9 tháng 11 2016

d/ Đặt \(x=a+b\) , \(y=b+c\) , \(z=c+a\)

thì : \(a=\frac{x+z-y}{2}\) ; \(b=\frac{x+y-z}{2}\) ; \(c=\frac{y+z-x}{2}\)

Ta có : \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{\frac{x+z-y}{2}}{y}+\frac{\frac{x+y-z}{2}}{z}+\frac{\frac{y+z-x}{2}}{x}\)

\(=\frac{z+x-y}{2y}+\frac{x+y-z}{2z}+\frac{y+z-x}{2x}=\frac{1}{2}\left(\frac{x}{y}+\frac{y}{x}+\frac{z}{y}+\frac{y}{z}+\frac{z}{x}+\frac{x}{z}-3\right)\)

\(=\frac{1}{2}\left(\frac{x}{y}+\frac{y}{x}+\frac{y}{z}+\frac{z}{y}+\frac{z}{x}+\frac{x}{z}\right)-\frac{3}{2}\ge\frac{1}{2}.6-\frac{3}{2}=\frac{3}{2}\)

9 tháng 11 2016

b/ \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)\ge6abc\)

\(\Leftrightarrow\left(a^2b^2-2abc+c^2\right)+\left(b^2c^2-2abc+a^2\right)+\left(c^2a^2-2abc+b^2\right)\ge0\)

\(\Leftrightarrow\left(ab-c\right)^2+\left(bc-a\right)^2+\left(ca-b\right)^2\ge0\) (luôn đúng)

Vậy bđt ban đầu dc chứng minh.

21 tháng 10 2015

sử dụng hệ quả bun-nhi-a ta có:

VT\(\ge\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)+\left(ab+bc+ca\right)}\)

mà từ giả thiết , kết hợp với bất đẳng thức , ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)=>\(a+b+c\ge9\)

mặt khác: ab+bc+ca\(\le\frac{\left(a+b+c\right)^2}{3}\)

=> VT\(\ge\)\(\frac{3\left(a+b+c\right)^2}{\left(a+b+c\right)\left(a+b+c+3\right)}\ge\frac{3\left(a+b+c\right)^2}{\left(a+b+c\right)\frac{4\left(a+b+c\right)}{3}}=\frac{a+b+c}{4}\)(dpcm)

 

21 tháng 10 2015

kiss_rain_and_you giỏi thật làm được bài này

10 tháng 11 2016

a)Áp dụng Bđt Cô si ta có:

\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{3}{\sqrt[3]{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\)

\(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\ge\frac{3\sqrt[3]{abc}}{\sqrt[3]{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\)

Cộng theo vế 2 bđt trên ta có:

\(3\ge\frac{3\left(\sqrt[3]{abc}+1\right)}{\sqrt[3]{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)\(\Rightarrow\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\)

Dấu = khi a=b=c

b)Áp dụng Bđt Cô-si ta có:

\(\frac{bc}{a}+\frac{ca}{b}\ge2\sqrt{\frac{bc^2a}{ab}}=2c\)

\(\frac{ca}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ca^2b}{bc}}=2a\)

\(\frac{bc}{a}+\frac{ab}{c}\ge2\sqrt{\frac{b^2ac}{ac}}=2b\)

Cộng theo vế 3 bđt trên ta có:

\(2\left(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\)

\(\Rightarrow\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c\)

Đấu = khí a=b=c

 

10 tháng 11 2016

bn sử đấu = khí dấu = khi nhé

ok , cảm ơn bạn !!!

Bài toán rất hay và bổ ích !!!

8 tháng 2 2019

Đây nhé 

Đặt b + c = x ; c + a = y ;  a + b = z 

\(\Rightarrow\hept{\begin{cases}x+y=2c+b+a=2c+z\\y+z=2a+b+c=2a+x\\x+z=2b+a+c=2b+y\end{cases}}\)

\(\Rightarrow\frac{x+y-z}{2}=c;\frac{y+z-x}{2}=a;\frac{x+z-y}{2}=b\)

Thay vào PT đã cho ở đề bài , ta có : 

\(\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\)

\(=\frac{1}{2}\left(\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}-3\right)\)

\(\ge\frac{1}{2}\left(2+2+2-3\right)=\frac{3}{2}\)

( cái này cô - si cho x/y + /x ; x/z + z/x ; y/z + z/y) 

NV
11 tháng 2 2020

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

a/ \(VT=\frac{1}{a+a+b+c}+\frac{1}{a+b+b+c}+\frac{1}{a+b+c+c}\le\frac{1}{16}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)

\(\Rightarrow VT\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=\frac{3}{4}\)

b/ \(VT\le\frac{ab}{4}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{bc}{4}\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{ca}{4}\left(\frac{1}{c}+\frac{1}{a}\right)\)

\(VT\le\frac{a}{4}+\frac{b}{4}+\frac{b}{4}+\frac{c}{4}+\frac{c}{4}+\frac{a}{4}=\frac{a+b+c}{2}\)

Dấu "=" xảy ra khi \(a=b=c\)