Chứng minh rằng số chính phương lẻ chia 8 dư 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Nếu n là số chính phương lẻ thì n = (2k + 1)2 = 4k2 + 4k + 1 = 4k(k+1) + 1
Ta thấy ngay k(k + 1) chia hết cho 2, vậy thì 4k(k + 1) chia hết cho 8.
Vậy n chia 8 dư 1.
b) Em tham khảo tại link dưới đây nhé.
Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath
Gọi số chính phương đó là \(\left(2n+1\right)^2\)
Ta có: \(\left(2n+1\right)^2=4n^2+4n+1\)
\(=4n\left(n+1\right)+1\)(chia 4 sư 1)
Số lẻ là 2k+1
Ta có: (2k+1)2==(2k+1).(2k+1)=2k.(2k+1)+2k+1=2k.2k+2k+2k+1=4k2+4k+1=4.(k2+k)+1
=4.k.(k+1)+1
Vì k và k+1 là 2 số tự nhiên liên tiếp.
=>k.(k+1) chia hết cho 2
=>4.k.(k+1) chia hết cho 8
=>4.k.(k+1)+1:8(dư 1)
=>(2k+1)2:8(dư 1)
=>Bình phương của 1 số lẻ chia 8 dư 1
=>ĐPCM
Số lẻ có dạng 2k + 1
( 2 k + 1 ) ^2 = 4k^2 + 4k + 1
= 4k ( k + 1 ) + 1
Vì k ( k +1 ) là hai số tự nhiên liên tiếp => k ( k+ 1 ) chia hết cho 2 => 4 k(k + 1 ) chia hết cho 8
=> 4 k(k+ 1 ) + 1 chia 8 dư 1
=> 4k^2 + 4k + 1 chia 8 dư 1 => (2k+ 1 )^2 chia 8 dư 1 ( ĐPCM)
a) Số lẻ c ó dạng \(2k+1\left(k\in N\right)\)
Bình phương của số lẻ là :
\(\left(2k+1\right)^2=4k^2+4k+1\)
Mà \(4k^2+4k⋮4\)
\(\Leftrightarrow4k^2+4k+1\) chia 4 dư 1
\(\Leftrightarrow\) Bình phương của 1 số lẻ chia 4 dư 1
Chứng minh rằng:
a) Bình phương của một số lẻ chia cho 4 dư 1
Bình phương của một số lẻ có dạng là (2k+1)^2
Ta có:
(2k+1)^2=4k^2+4k+1
Mà 4k^2+4k chia hết cho 4 nên 4k^2+4k+1 chia 4 dư 1.
Hay (2k+1) chia 4 dư 1
b) Bình phương của một số lẻ chia cho 8 dư 1
Bình phương của một số lẻ có dạng là (2k+1)^2
Ta có: (2k+1)^2=4k^2+4k+1
Ta lại có: 4k^2+4k chia hết cho 4
4k^2+4k chia hết cho 2
Suy ra 4k^2+4k chia hết cho 8
vậy 4k^2+4k+1 chia 8 dư 1
hay (2k+1)^2 chia 8 dư 1
1.Vì số chính phương bằng bình phương của một số tự nhiên nên có thể thấy ngay số chính phương phải có chữ số tận cùng là một trong các chữ số 0 ; 1 ; 4 ; 5 ; 6 ; 9
2.
Một số chính phương được gọi là số chính phương chẵn nếu nó là bình phương của một số chẵn, là số chính phương lẻ nếu nó là bình phương của một số lẻ. (Nói một cách khác, bình phương của một số chẵn là một số chẵn, bình phương của một số lẻ là một số lẻ)
gọi số chính phương là \(a^3\)sau đó phân tích là ra mà
giải rõ ràng ra hộ vs ạ