K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2016

 Bài a, 
[(9²)^10]-[(3*9)^13]-(9)^21 
[(9^20)(1-9)]-[(3*9)^13] 
[(9^20)*(-8)]-[(3*9)^13] 
[(9^20)*(-8)]-[(3^13)(9^13)] 
[(9^13)*[(-8)*(9^7)-(3^13)] 
[(9^13)*[(-8)(3^14)-(3^13)] 
[(9^13)*[(-8)*(3)*(3^13)-(3^13)] 
[(9^13)*[(3^13)*(-24-1)] 
(3^26)*(3^13)*(-25) 
(3^39)*(-25) 
-(3^37)*(3^2)*(25) 
-(3^37)*(225) 

Đáp số: 
Số đã cho là bội số (âm) của 225 nên chia hết cho 225 

3 tháng 1 2018

\(81^{10}-27^{13}-9^{21}\)

\(=\left(3^4\right)^{10}-\left(3^3\right)^{13}-\left(3^2\right)^{21}\)

\(=3^{40}-3^{39}-3^{42}\)

\(=3^{39}\left(3-1-3^3\right)\)

\(=3^{39}.\left(-25\right)\)

\(=3^{37}.3^2.\left(-25\right)\)

\(=3^{37}.\left(-225\right)⋮225\)

\(\Leftrightarrow81^{10}-27^{13}-9^{21}⋮225\left(đpcm\right)\)

25 tháng 10 2023

a)

\(3^{21}-3^{18}\\ =3^{17}.\left(3^4-3\right)\\ =3^{17}.\left(81-3\right)\\ =3^{17}.78\)

Vì \(3^{17}.78⋮78\) nên \(3^{21}-3^{18}⋮78\) (đpcm)

Vậy...

b)
\(81^7-27^9-9^{13}\\ =\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\\ =3^{28}-3^{27}-3^{26}\\ =3^{24}.\left(3^4-3^3-3^2\right)\\ =3^{24}.\left(81-27-9\right)\\ =3^{24}.45\)

Vì \(3^{24}.45⋮45\) nên \(81^7-27^9-9^{13}⋮45\) (đpcm)

Vậy...

31 tháng 10 2022

b: \(=5^{198}-5^{197}+5^{196}=5^{196}\left(5^2-5+1\right)=5^{195}\cdot105⋮105\)

a: Đề sai rồi bạn

20 tháng 3 2020

Xem cách làm câu (b);(c);(d)
Bạn tham khảo:

Câu hỏi của Nguyễn Ngọc Thảo My - Toán lớp 7 - Học toán với OnlineMath

5 tháng 2 2022

các bạn giúp mik nha

Cho A bằng 5^2021+1 phần 5^2022+1  ;  B bằng 5^2020+1 phần 5^2021+1. Hãy so sánh A và B

c: \(81^7-27^9-9^{13}\)

\(=3^{28}-3^{27}-3^{26}\)

\(=3^{26}\left(3^2-3-1\right)\)

\(=3^{24}\cdot45⋮45\)

2 tháng 2 2023

a) Có 817 - 279 + 329 

 = (34)7 - (33)9 + 329

= 328 - 327 + 329

= 327(3 - 1 + 32)

= 327.11 = 326.33 \(⋮33\)

b) 911 - 910 - 99

= 99(92 - 9 - 1) 

= 99.71

= 98.639 \(⋮639\)

c) P = 3636 - 92000 

Có 3636 = \(\overline{....6}\)

\(9^{2000}=\left(9^2\right)^{1000}=81^{1000}=\overline{.....1}\)

nên P = \(\overline{...6}-\overline{...1}=\overline{...5}\Rightarrow P⋮5\)

dễ thấy P \(⋮9\) mà (5;9) = 1

nên \(P⋮9.5=45\)