Cho hai góc kề bù xOm và mOy, biết Góc xOm= 50 độ
a. Tính góc yOm
b Trên cùng nửa mặt phẳng bờ chứa tia Om bờ là đường thẳng xy, vẽ tia On sao cho góc yOn= 80o. So sánh góc mOn và góc xOm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) vì oy và ox là hai tia đối góc xoy=180 độ.=> xom và moy là hai góc kề bù.
=> xom + moy = \(180^0\)
<=> \(45^0\)+ moy = \(180^0\)
=> moy = 180 - 45 =\(135^0\)
+) trên cùng một nửa mf có bờ chứa tia xy, có moy > noy (vì \(135^0\)> \(75^0\)) nên tia on nằm giữa hai tia om và oy.
=> mon + noy = moy
<=> mon + \(75^0\)= \(135^0\)
=> mon = 135 - 75 =\(60^0\)
=>................................( tự so sánh nhé!)
Bài 2:
a)
Sửa đề: Tính \(\widehat{yOz}\)
Ta có: \(\widehat{xOy}+\widehat{yOz}=180^0\)(hai góc kề bù)
\(\Leftrightarrow\widehat{yOz}+110^0=180^0\)
hay \(\widehat{yOz}=70^0\)
b) Ta có: Om là tia phân giác của \(\widehat{xOy}\)
nên \(\widehat{xOm}=\dfrac{\widehat{xOy}}{2}=\dfrac{110^0}{2}=55^0\)
Ta có: \(\widehat{xOm}+\widehat{mOz}=180^0\)(hai góc kề bù)
nên \(\widehat{mOz}=180^0-\widehat{xOm}=180^0-55^0=125^0\)
Ta có: On là tia phân giác của \(\widehat{yOz}\)
nên \(\widehat{zOn}=\dfrac{\widehat{zOy}}{2}=\dfrac{70^0}{2}=35^0\)
Trên cùng một nửa mặt phẳng bờ chứa tia Oz, ta có: \(\widehat{zOn}< \widehat{zOm}\left(35^0< 125^0\right)\)
nên tia On nằm giữa hai tia Oz và Om
\(\Leftrightarrow\widehat{zOn}+\widehat{mOn}=\widehat{zOm}\)
\(\Leftrightarrow35^0+\widehat{mOn}=125^0\)
hay \(\widehat{mOn}=90^0\)
Vậy: \(\widehat{mOn}=90^0\)
1. Cho xOy = 135. Trên nửa mặt phẳng bờ Oy chứa Ox, vẽ tia Oz sao cho góc yOz vuông. Gọi Ot là tia đối của tia Oz. Khi đó xOt = 135
2. Cho đường thẳng xy. Trên đường thẳng xy lấy O. Trên cùng một nửa mặt phẳng bờ xy vẽ các tia Om và On sao cho xOm và mOn là hai góc kề nhau. Biết xOm = 2mOn = 6nOy. Vậy mOn = 54
100 % chính xác!