K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(VT=\left(x-y-z\right)^2\)

\(=\left(x-y-z\right)\left(x-y-z\right)\)

\(=x^2-xy-xz-yx+y^2+yz-zx+zy+z^2\)

\(=x^2+y^2+z^2-2xy+2yz-2xz\)

=VP(đpcm)

b) Ta có: \(VT=\left(x+y-z\right)^2\)

\(=\left(x+y-z\right)\left(x+y-z\right)\)

\(=x^2+xy-xz+yx+y^2-yz-zx-zy+z^2\)

\(=x^2+y^2+z^2+2xy-2yz-2zx\)

=VP(đpcm)

c) Sửa đề: Chứng minh \(\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)=x^4-y^4\)

Ta có: \(VT=\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)\)

\(=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4\)

\(=x^4-y^4\)

=VP(đpcm)

d) Ta có: \(VT=\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)

\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5\)

\(=x^5+y^5\)

=VP(đpcm)

20 tháng 7 2020

a, b, nhân vào là ra à

c, nghe cứ là lạ

d, cũng nhân là ra hà

\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5=x^5+y^5\)

13 tháng 12 2017

Áp dụng BĐT Cauchy-Schwarz, ta có:

\(VT\ge\dfrac{\left(1+1+1\right)^2}{x^2+y^2+z^2+2xy+2yz+2xz}=\dfrac{9}{\left(x+y+z\right)^2}=9\)

Đẳng thức xảy ra khi \(x=y=z=\dfrac{1}{3}\)

17 tháng 12 2017

Nhỡ may x=y=1/4 z=1/2 và các hoán vị của chúng thì sao ạ ??

29 tháng 4 2020

Ta có: 

\(15\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)=10\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)+2014\)

\(\le10\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)+2014\)

=> \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\le\frac{2014}{5}\)

\(P=\frac{1}{\sqrt{5x^2+2xy+2yz}}+\frac{1}{\sqrt{5y^2+2yz+2zx}}+\frac{1}{\sqrt{5z^2+2zx+2xy}}\)

=> \(P\sqrt{\frac{2014}{135}}=\frac{1}{\sqrt{5x^2+2xy+2yz}.\sqrt{\frac{135}{2014}}}\)

\(+\frac{1}{\sqrt{5y^2+2yz+2zx}\sqrt{\frac{135}{2014}}}+\frac{1}{\sqrt{\frac{135}{2014}}\sqrt{5z^2+2zx+2xy}}\)

\(\le\frac{1}{2}\left(\frac{1}{5x^2+2xy+2yz}+\frac{2014}{135}+\frac{1}{5y^2+2yz+2zx}+\frac{2024}{135}+\frac{1}{5z^2+2yz+2zx}+\frac{2014}{135}\right)\)

\(\le\frac{1}{2}\left[\frac{1}{81}\left(\frac{5}{x^2}+\frac{2}{xy}+\frac{2}{yz}\right)+\frac{1}{81}\left(\frac{5}{y^2}+\frac{2}{yz}+\frac{2}{zx}\right)+\frac{1}{81}\left(\frac{5}{z^2}+\frac{2}{zx}+\frac{2}{xy}\right)+\frac{2014}{45}\right]\)

\(=\frac{5}{162}\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)+\frac{2}{81}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)+\frac{1007}{45}\)

\(\le\frac{5}{162}.\frac{2014}{5}+\frac{2}{81}.\frac{2014}{5}+\frac{1007}{45}=\frac{2014}{45}\)

=> \(P\le\frac{2014}{45}:\sqrt{\frac{2014}{135}}=3\sqrt{\frac{2014}{135}}\)

Dấu "=" xảy ra <=> x = y = z = \(\sqrt{\frac{15}{2014}}\)

15 tháng 7 2017

a) \(VT=\left(x-1\right)\left(x^2+x+1\right)\)

\(=x^3+x^2+x-x^2-x-1\)

\(=x^3-1=VP\)

b) \(VT=\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)\)

\(=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4\)

\(=x^4-y^4=VP\)

c) \(VT=\left(x+y+z\right)^2\)

\(=\left(x+y\right)^2+2\left(x+y\right)z+z^2\)

\(=x^2+2xy+y^2+2xz+2yz+z^2\)

\(=x^2+y^2+z^2+2xy+2yz+2zx=VP\)

Chúc bạn học tốt.

NV
17 tháng 10 2019

1/ ĐKXĐ: \(x\ge1;y\ge4\)

\(M=\frac{1\sqrt{x-1}}{x}+\frac{2.\sqrt{y-4}}{2y}\le\frac{1+x-1}{2x}+\frac{4+y-4}{4y}=\frac{1}{2}+\frac{1}{4}=\frac{3}{4}\)

\(M_{max}=\frac{3}{4}\) khi \(\left\{{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{y-4}=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=8\end{matrix}\right.\)

2/ \(\Leftrightarrow x^2-2xy+y^2+x^2+4x+4=8\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x+2\right)^2=8=2^2+2^2\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x-y\right)^2=4\\\left(x+2\right)^2=4\end{matrix}\right.\) \(\Rightarrow...\)

3/ \(\frac{x^2}{y^2}+1\ge2\sqrt{\frac{x^2}{y^2}}=\frac{2x}{y}\)

Tương tự: \(\frac{y^2}{z^2}+1\ge\frac{2y}{z}\) ; \(\frac{z^2}{x^2}+1\ge\frac{2z}{x}\)

\(\Rightarrow\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}+3\ge\frac{2x}{y}+\frac{2y}{z}+\frac{2z}{x}=\frac{x}{y}+\frac{y}{z}+\frac{z}{x}+\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)\)

\(\Rightarrow\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}+3\ge\frac{x}{y}+\frac{y}{z}+\frac{z}{x}+3\sqrt{\frac{xyz}{xyz}}=\frac{x}{y}+\frac{y}{z}+\frac{z}{x}+3\)

\(\Rightarrow\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}\ge\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\)

Dấu "=" xảy ra khi \(x=y=z\)

19 tháng 5 2017

Câu a.

Ta luôn có 

\(\frac{a}{a+b}>\frac{a}{a+b+c}\)  (do a+b < a+b+c)

\(\frac{b}{b+c}>\frac{b}{a+b+c}\)

\(\frac{c}{c+a}>\frac{c}{a+b+c}\)

Cộng theo từng vế rồi rút gọn ta đươc đpcm

19 tháng 5 2017

Cảm ơn b nhé. B biết làm.câu b c d không giúp m với