K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2016

\(A=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+...+\frac{1}{16}\left(1+2+3+...+2016\right)\)

\(A=1+\frac{1}{2}.\frac{\left(1+2\right).2}{2}+\frac{1}{3}.\frac{\left(1+3\right).3}{2}+\frac{1}{4}.\frac{\left(1+4\right).4}{2}+...+\frac{1}{16}.\frac{\left(1+16\right).16}{2}\)

\(A=1+\frac{1}{2}.\frac{3.2}{2}+\frac{1}{3}.\frac{4.3}{2}+\frac{1}{4}.\frac{5.4}{2}+...+\frac{1}{16}.\frac{17.16}{2}\)

\(A=1+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{17}{2}\)

\(A=\frac{1}{2}.\left(2+3+4+5+...+17\right)\)

\(A=\frac{1}{2}.\frac{\left(2+17\right).16}{2}=19.4=76\)

12 tháng 11 2016

hik như vế sau là a làm theo 16 chứ k fai 2016 hay sao ấy

25 tháng 2 2016

b) trước hết ta cần chứng minh nếu x+y+z=0 thì x^3+y^3+z^3=3xyz

ta có x+y+z=0==> x=-(y+z) 

             <=> \(x^3=-\left(y^3+z^3+3yz\left(y+z\right)\right)\)

           <=> \(x^3+y^3+z^3=-3yz\left(y+z\right)\)

      <=> \(x^3+y^3+z^3=3xyz\)( cì y+z=-x)

 áp dụng vào bài ta có \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)

 do đó M=\(\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^2}=\frac{abc}{a^3}+\frac{abc}{b^3}+\frac{abc}{c^3}=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)=abc\cdot\frac{3}{abc}=3\)

14 tháng 4 2019

c)  \(A=\frac{6}{4}+\frac{6}{28}+\frac{6}{70}+\frac{6}{130}+\frac{6}{208}\) 

\(=\frac{6}{1.4}+\frac{6}{4.7}+\frac{6}{7.10}+\frac{6}{10.13}+\frac{6}{13.16}\) 

\(=2\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}\right)\)

\(=2\left(1-\frac{1}{16}\right)\) 

\(=2.\frac{15}{16}\) 

\(=\frac{15}{8}\) 

Vậy A=\(\frac{15}{8}\)

14 tháng 4 2019

a) \(\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+...+\frac{3^2}{97.100}\)

\(=3\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\right)\)

\(=3\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)

\(=3\left(1-\frac{1}{100}\right)\)

\(=3.\frac{99}{100}=\frac{297}{100}\)