Tìm GTLN của:
3 - 8x - x2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=-\left(x^2+4x+4\right)-\left(y^2-8y+16\right)+22\\ =-\left(x^2+2x.2+2^2\right)-\left(y^2-2.y.4+4^2\right)+22\\ =-\left(x+2\right)^2-\left(y-4\right)^2+22\\ Vậy:max_C=22.khi.x=-2.và.y=4\)
\(A=-3x^2+6x-7=-3\left(x^2-2x+1-1\right)-7\)
\(=-3\left(x-1\right)^2-4\le-4\)Dấu ''='' xảy ra khi x = 1
\(B=-2x^2+5x+1=-2\left(x^2-\dfrac{5}{2}x\right)+1\)
\(=-2\left(x^2-2.\dfrac{5}{4}x+\dfrac{25}{16}-\dfrac{25}{16}\right)+1\)
\(=-2\left(x-\dfrac{5}{4}\right)^2+\dfrac{33}{8}\le\dfrac{33}{8}\)Dấu ''='' xảy ra khi x = 5/4
C;D chỉ có GTNN thôi bạn nhé \(C=2x^2-8x+13=2\left(x^2-4x+4-4\right)+13\)
\(=2\left(x-2\right)^2+5\ge5\)Dấu ''='' xảy ra khi x = 2
\(D=x^2-3x+5=x^2-2.\dfrac{3}{2}x+\dfrac{9}{4}-\dfrac{9}{4}+5\)
\(=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)Dấu ''='' xảy ra khi x = 3/2
d: Ta có: \(D=x^2-3x+5\)
\(=x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{11}{4}\)
\(=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{3}{2}\)
Bạn coi lại đề, GTLN và GTNN của biểu thức \(\dfrac{4x^2-8x+5}{x^2+1}\) rất xấu, và phải dùng kiến thức lớp 9 để tìm
vâng bn có thể lm kiến thức lớp 9 về delta để giải hộ m dc ko akk
Bài toán này cho kết quả rất xấu, vì vậy nằm ngoài khả năng của học sinh lớp 8
Muốn giải thì phải sử dụng kĩ thuật miền giá trị, cần kiến thức delta của lớp 9
\(B=\left(x-8x-3\right)\)
\(B=\left(x^2-2x4-16\right)+13\)
\(-B=\left(x^2+2x4+16\right)-13\)
\(-B=\left(x+4\right)^2-13\ge-13\)
\(B=-\left(x+4\right)^2+13\le13\)
Dấu "=" xảy ra khi và chỉ khi \(-\left(x+4\right)^2=0\)
\(\Leftrightarrow\left(x+4^2\right)=0\)
\(\Leftrightarrow x+4=0\)
\(\Leftrightarrow x=-4\)
Vậy GTLN của B là 13 khi và chỉ khi x=-4
A=3(x^2+2/3x-1)
=3(x^2+2*x*1/3+1/9-10/9)
=3(x+1/3)^2-10/3>=-10/3
Dấu = xảy ra khi x=-1/3
\(B=1+\dfrac{15}{x^2+x+5}=1+\dfrac{15}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}}< =1+15:\dfrac{19}{4}=1+\dfrac{60}{19}=\dfrac{79}{19}\)
Dấu = xảy ra khi x=-1/2
A) \(A=-3x^2+x+1\)
\(A=-3\left(x^2-\dfrac{1}{3}x-\dfrac{1}{3}\right)\)
\(A=-3\left(x^2-2\cdot\dfrac{1}{6}\cdot x+\dfrac{1}{36}-\dfrac{13}{36}\right)\)
\(A=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{13}{12}\)
Mà: \(-3\left(x-\dfrac{1}{6}\right)^2\le0\forall x\)
\(\Rightarrow A=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{13}{12}\le\dfrac{13}{12}\forall x\)
Dấu "=" xảy ra khi:
\(x-\dfrac{1}{6}=0\Rightarrow x=\dfrac{1}{6}\)
Vậy: \(A_{max}=\dfrac{13}{12}.khi.x=\dfrac{1}{6}\)
B) \(B=2x^2-8x+1\)
\(B=2\left(x^2-4x+\dfrac{1}{2}\right)\)
\(B=2\left(x^2-4x+4-\dfrac{7}{2}\right)\)
\(B=2\left(x-2\right)^2-7\)
Mà: \(2\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow B=2\left(x-2\right)^2-7\ge-7\forall x\)
Dấu "=" xảy ra khi:
\(x-2=0\Rightarrow x=2\)
Vậy: \(B_{min}=2.khi.x=2\)
Tìm GTNN.
Gọi biểu thức trên là A. Ta có; \(A=2x+3\Rightarrow A^2=\left(2x+3\right)^2=4x^2+12x+9\)
Đặt \(B=4x^2+12x+9\).Ta có:
\(B=4x^2+12x+9\)
\(=4\left(x^2+3x+\frac{9}{4}\right)=4\left(x+\frac{3}{2}\right)^2\ge0\) (do \(4\left(x+\frac{3}{2}\right)\ge0\forall x\))
Mà \(A^2=B\Rightarrow A=\sqrt{B}\ge\sqrt{0}=0\)
Vậy \(A_{min}=0\Leftrightarrow4\left(x+\frac{3}{2}\right)^2=0\Leftrightarrow x=-\frac{3}{2}\)
Tìm GTLN:tương tự
\(3-8x-x^2=-\left(x^2+8x-3\right)=-\left(x^2+2.x.4+4^2-19\right)=-\left(x+4\right)^2+19\)
Vì \(\left(x+4\right)^2\ge0\)
nên \(-\left(x+4\right)^2\le0\)
do đó \(-\left(x+4\right)^2+19\le19\)
Vậy \(Max_{3-8x-x^2}=19\)khi \(x+4=0\Rightarrow x=-4\)