Cho 1^2+2^2+3^2+...+49^2+50^2=m
Tính A=2^2+4^2+6^2+...+98^2+100^2 theo m
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy:
\(A=1\cdot3+2\cdot4+...+97\cdot99+98\cdot100\)
\(A=1\cdot\left(1+2\right)+2\cdot\left(1+3\right)+...+97\cdot\left(1+98\right)+98\cdot\left(1+99\right)\)
\(A=\left(1+1\cdot2\right)+\left(2+2\cdot3\right)+...+\left(97+97\cdot98\right)+\left(98+98\cdot99\right)\)
\(A=\left(1+2+...+97+98\right)+\left(1\cdot2+2\cdot3+...+97\cdot98+98\cdot99\right)\)
Đặt \(B=1+2+...+97+98\) ; \(C=1\cdot2+2\cdot3+...+97\cdot98+98\cdot99\). Khi đó: \(A=B+C\)
* Do số các số hạng của tổng B là: ( 98 - 1 ) : 1 + 1 = 98 ( số hạng ) nên:
\(B=1+2+...+97+98=\frac{\left(98+1\right)\cdot98}{2}=99\cdot49=4851\)
* Ta thấy:
\(C=1\cdot2+2\cdot3+...+97\cdot98+98\cdot99\)
\(\Rightarrow3\cdot C=1\cdot2\cdot3+2\cdot3\cdot3+...+97\cdot98\cdot3+98\cdot99\cdot3\)
\(\Rightarrow3\cdot C=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+...+97\cdot98\cdot\left(99-96\right)+98\cdot99\cdot\left(100-97\right)\)
\(\Rightarrow3\cdot C=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+...+97\cdot98\cdot99-96\cdot97\cdot98+98\cdot99\cdot100-97\cdot98\cdot99\)
\(\Rightarrow3\cdot C=98\cdot99\cdot100\)
\(\Rightarrow C=\frac{98\cdot99\cdot100}{3}\)
\(\Rightarrow C=98\cdot33\cdot100\)
\(\Rightarrow C=323400\)
Vậy: \(A=B+C=4851+323400=328251\)
Câu 2:
\(2\cdot S=2+2^2+...+2^{2018}\)
=>\(S=2^{2018}-1\)
\(5\cdot2^{2017}>2\cdot2^{2017}=2^{2018}>2^{2018}-1\)
nên \(B< 5\cdot2^{2017}\)
a, Số số hạng của dãy số là 9(số);
=> Tổng của dãy số là (9+1)*9/2=45
b,Số số hạng của dãy số là 50 số
=> Tổng của dãy số là (50+1)*50/2=1275
c, Số số hạng của dãy số là (99-1)/2+1=50 số
=> Tổng của dãy số là (99+1)*50/2= 2500
a: Số số hạng là:
50-1+1=50(số)
Tổng của dãy là:
\(\dfrac{\left(50+1\right)\cdot50}{2}=1275\)
b: Số số hạng là:
(100-2):2+1=50(số)
Tổng của dãy là:
\(\dfrac{\left(100+2\right)\cdot50}{2}=2550\)
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)
\(A=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{9900}\right)\)
\(A=\frac{1}{2}.\frac{4949}{9900}\)
\(A=\frac{4949}{19800}\)
A=2^2+4^2+6^2+...+98^2+100^2=\(2^2\left(1+2^2+3^2+...+50^2\right)\))=\(2^2.m\)
sau đó bạn chỉ cần tính 1^2+2^2+3^2+...+49^2+50^2