X khác 1 và X khác -1 là đkxđ của pt nào
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{-3}{\sqrt{x}+3}< \dfrac{1}{2}\)
\(\Leftrightarrow-6< \sqrt{x}+3\Leftrightarrow\sqrt{x}>-9\left(đúng\forall x\right)\)
Vậy \(x\in Z^+,x\ne9\)
Uhm cảm ơn bạn nhưng mình không hiểu tại sao máy lại ra thế này:<
Nếu mình nhớ không nhầm thì chúng ta không nhân chéo được đúng khôm ạ:33? Hay thêm trường hợp x khác 0 ạ @_@?
Sai điều kiện hay sao á
Điều kiện là x - 1 khác 0
x khác 1
\(E=\frac{x^2}{x-1}\)
\(=\frac{x^2-1+1}{x-1}\)
\(=\frac{x^2-1}{x-1}+\frac{1}{x-1}\)
\(=\frac{\left(x-1\right)\left(x+1\right)}{x-1}+\frac{1}{x-1}\)
\(=x+1+\frac{1}{x-1}\)
Để thỏa đề thì 1 phải chia hết cho x - 1
x - 1 là ước của 1
\(\Rightarrow\orbr{\begin{cases}x-1=1\\x-1=-1\end{cases}}\)
\(\orbr{\begin{cases}x=0\left(n\right)\\x=-2\left(n\right)\end{cases}}\)
Vì ĐKXĐ của phân thức \(\dfrac{x^3+8}{2x-12}\) là \(x\ne6\)
mà \(x\ne a\)
nên a=6
Vậy: a=6
Câu 1:
a: x+2=0
nên x=-2
b: (x-3)(2x+8)=0
=>x-3=0 hoặc 2x+8=0
=>x=3 hoặc x=-4
a .
x + 2 = 0
=> x = 0 - 2 = -2
b ) .
<=> x - 3 = 0 ; 2x + 8 = 0
= > x = 3 ; x = -8/2 = -4
c ) .
ĐKXĐ của pt : x - 5 khác 0 = > ddk : x khác 5
ĐK: `{(3x+4>=0),(1+2x>=0),(x+3>=0):}<=> {(x>=-4/3),(x>=-1/2),(x>=-3):} <=> x>=-1/2`
Ta có \(A=\frac{\sqrt{x}-1}{\sqrt{x}+1}=\frac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\frac{2}{\sqrt{x}+1}\)
Để A nguyên thì \(\frac{2}{\sqrt{x}+1}\)phải nguyên suy ra \(\sqrt{x}+1\)là ước của 2
Ta thấy \(Ư\left(2\right)=\left\{1;-1;2;-2\right\}\) mà điều kiện cho \(x\ge0\)và \(x\ne1\)nên \(\sqrt{x}+1\in\left\{1;2\right\}\)
Với \(\sqrt{x}+1=1\Rightarrow\sqrt{x}=0\Rightarrow x=0\)(thoải mãn )
Với \(\sqrt{x}+1=2\Rightarrow\sqrt{x}=1\Rightarrow x=1\)(loại)
Vậy x = 0 thì A nguyên
1:Phương trình luôn có nghiệm với mọi m<>0
Sửa đề: Chứng minh
TH1: m=0
Phương trình sẽ trở thành \(0x^2-2\left(0+1\right)x+1-3\cdot0=0\)
=>1=0(vô lý)
TH2: m<>0
\(\Delta=\left[-2\left(m+1\right)\right]^2-4\cdot m\cdot\left(1-3m\right)\)
\(=4\left(m+1\right)^2-4m+12m^2\)
\(=4m^2+8m+4-4m+12m^2\)
\(=16m^2+4m+4\)
\(=16\left(m^2+\dfrac{1}{4}m+\dfrac{1}{4}\right)\)
\(=16\left(m^2+2\cdot m\cdot\dfrac{1}{8}+\dfrac{1}{64}+\dfrac{15}{64}\right)\)
\(=16\left(m+\dfrac{1}{8}\right)^2+\dfrac{15}{4}>=\dfrac{15}{4}>0\forall m\)
=>Phương trình luôn có nghiệm với mọi m<>0
2: Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left[-2\left(m+1\right)\right]}{m}=\dfrac{2m+2}{m}\\x_1x_2=\dfrac{c}{a}=\dfrac{1-3m}{m}\end{matrix}\right.\)
\(x_1^2+x_2^2\)
\(=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=\left(\dfrac{2m+2}{m}\right)^2-2\cdot\dfrac{1-3m}{m}\)
\(=\dfrac{4m^2+8m+4}{m^2}+\dfrac{6m-2}{m}\)
\(=\dfrac{4m^2+8m+4+6m^2-2m}{m^2}\)
\(=\dfrac{10m^2+6m+4}{m^2}\)
\(=10+\dfrac{6}{m}+\dfrac{4}{m^2}\)
\(=\left(\dfrac{2}{m}\right)^2+2\cdot\dfrac{2}{m}\cdot1,5+2,25+7,75\)
\(=\left(\dfrac{2}{m}+1,5\right)^2+7,75>=7,75\forall m\ne0\)
Dấu '=' xảy ra khi \(\dfrac{2}{m}+1,5=0\)
=>\(\dfrac{2}{m}=-1,5\)
=>\(m=-\dfrac{2}{1,5}=-\dfrac{4}{3}\)
Với \(m=0\) pt có nghiệm
Với \(m\ne0\)
\(\Delta'=\left(m+1\right)^2-m\left(1-3m\right)=4m^2+m+1=\left(m+\dfrac{1}{8}\right)^2+\dfrac{15}{16}>0;\forall m\)
Pt luôn có nghiệm với mọi m
b. Câu này chắc đề đúng là "với m khác 0"
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m+1\right)}{m}\\x_1x_2=\dfrac{1-3m}{m}\end{matrix}\right.\)
\(P=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=\dfrac{4\left(m+1\right)^2}{m^2}-\dfrac{2\left(1-3m\right)}{m}\)
\(=\dfrac{10m^2+6m+4}{m^2}=\dfrac{4}{m^2}+\dfrac{6}{m}+10\)
\(=4\left(\dfrac{1}{m}+\dfrac{3}{4}\right)^2+\dfrac{31}{4}\ge\dfrac{31}{4}\)
Dấu "=" xảy ra khi \(m=-\dfrac{4}{3}\)