So sánh:
\(2016^{10}\)+ \(2017^9\)và \(2018^{10}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a : Cộng 2 vế cho 6 ta được :
\(7+6......7+\sqrt{37}\)
Mà : \(6=\sqrt{36}< \sqrt{37}\)
\(\Rightarrow7+6< \sqrt{37}+1\)
\(\Rightarrow7< \sqrt{37}+1\)
Cách khác của câu a.
Ta có : \(\sqrt{37}>\sqrt{36}=6\)
\(\Rightarrow\sqrt{37}+1>6+1=7\)
Vậy \(\sqrt{37}+1>7\)
Lời giải:
\(A=\sqrt{2017}-\sqrt{2016}=\frac{2017-2016}{\sqrt{2017}+\sqrt{2016}}=\frac{1}{\sqrt{2017}+\sqrt{2016}}\)
\(B=\sqrt{2018}-\sqrt{2017}=\frac{2018-2017}{\sqrt{2018}+\sqrt{2017}}=\frac{1}{\sqrt{2018}+\sqrt{2017}}\)
Dễ thấy \(0< \sqrt{2017}+\sqrt{2016}< \sqrt{2018}+\sqrt{2017}\Rightarrow \frac{1}{\sqrt{2017}+\sqrt{2016}}>\frac{1}{\sqrt{2018}+\sqrt{2017}}\)\(\Rightarrow A>B\)
Ta có:
\(2016^{10}+2016^9=2016^9.2016+2016^9=2016^9(2016+1)=2017.2016^9\)
\(2017^{10}=2017.2017^9\)
Xét thấy: \(2016<2017\Rightarrow 2016^9<2017^9\Rightarrow 2017.2016^9<2017.2017^9\)
\(\Rightarrow 2016^{10}+2016^9<2017^{10}\)
\(2018^{10}=\left(2016+2\right)^{10}\)
\(2017^9=\left(2016+1\right)^9\)
\(\Rightarrow2016^{10}+\left(2016+1\right)^9>\left(2016+2\right)^2\)
\(\Rightarrow2016^{10}+2017^9>2018^{10}\)
2016^10+2017^9<2018^10