Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(A=\sqrt{2017}-\sqrt{2016}=\frac{2017-2016}{\sqrt{2017}+\sqrt{2016}}=\frac{1}{\sqrt{2017}+\sqrt{2016}}\)
\(B=\sqrt{2018}-\sqrt{2017}=\frac{2018-2017}{\sqrt{2018}+\sqrt{2017}}=\frac{1}{\sqrt{2018}+\sqrt{2017}}\)
Dễ thấy \(0< \sqrt{2017}+\sqrt{2016}< \sqrt{2018}+\sqrt{2017}\Rightarrow \frac{1}{\sqrt{2017}+\sqrt{2016}}>\frac{1}{\sqrt{2018}+\sqrt{2017}}\)\(\Rightarrow A>B\)
theo em là A=B
em mới học lớp 5 thôi chưa chắc đúng đâu
2017=2017
2018 hơn 2016 là 2 đơn vị
2017 lớn hơn 2016 là 1 đơn vị
2017 lớn hơn 2016 1 đơn vị
A hơn B số đăn vị là:
2-(1+1)=0
Nên A=B
thanks em nha anh sẽ xem lại
Ai có kết quả nữa thì giúp mình nha
\(A=\frac{1}{\sqrt{2018+\sqrt{2017}}+\sqrt{2017+\sqrt{2017}}};B=\frac{1}{\sqrt{2017+\sqrt{2016}}+\sqrt{2016+\sqrt{2016}}}\)
Phương pháp liên hợp nhé. đến đây dễ thấy rồi
a) Ta có: \(\left(\sqrt{2017}+\sqrt{2019}\right)^2=2017+2019+2\sqrt{2017.2019}\)
\(=4036+2\sqrt{\left(2018-1\right).\left(2018+1\right)}\)
\(=4036+2\sqrt{2018^2-1}< 4036+2\sqrt{2018^2}=2018.4=\left(2\sqrt{2018}\right)^2\)
Vậy x < y
A=\(\frac{1}{\sqrt{2018}+\sqrt{2017}}\)
B=\(\frac{1}{\sqrt{2016}+\sqrt{2015}}\)
=> A<B
Lời giải:
Ta có:
\(A-B=(\sqrt{2016}-\sqrt{2014})+(\sqrt{2017}-\sqrt{2015})+(\sqrt{2018}-\sqrt{2022})\)
\(=\frac{2}{\sqrt{2016}+\sqrt{2014}}+\frac{2}{\sqrt{2017}+\sqrt{2015}}-\frac{4}{\sqrt{2018}+\sqrt{2022}}\)
Dễ thấy:
\(0< \sqrt{2016}+\sqrt{2014}< \sqrt{2018}+\sqrt{2022}; 0< \sqrt{2017}+\sqrt{2015}< \sqrt{2018}+\sqrt{2022}\)
\(\Rightarrow \frac{1}{\sqrt{2016}+\sqrt{2014}}>\frac{1}{\sqrt{2018}+\sqrt{2022}};\frac{1}{\sqrt{2017}+\sqrt{2015}}>\frac{1}{\sqrt{2018}+\sqrt{2022}}\)
\(\Rightarrow A-B=2\left(\frac{1}{\sqrt{2016}+\sqrt{2014}}-\frac{1}{\sqrt{2018}+\sqrt{2022}}+\frac{1}{\sqrt{2017}+\sqrt{2015}}-\frac{1}{\sqrt{2018}+\sqrt{2022}}\right)>0\)
\(\Rightarrow A>B\)
giúp vs tth Trần Thanh Phương Nguyễn Văn Đạt Nguyễn Việt Lâm Akai Haruma