Thực hiện phép tính
(2.x-1)(x2-2.x.y+3.y2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=12x^3y-4x^2y^2+3xy^3\\ b,=x^3+3x^2-5x+3x^2+9x-15-x^3-4x^2+4x\\ =2x^2+8x-15\)
b: Ta có: \(\left(x+3\right)\left(x^2+3x-5\right)-x\left(x-2\right)^2\)
\(=x^3+3x^2-5x+3x^2+9x-15-x^3+4x^2-4x\)
\(=10x^2-15\)
1/2. x 2 y 2 (2x + y)(2x – y)
= 1/2. x 2 y 2 (4 x 2 – 2xy + 2xy – y 2 )
= 1/2. x 2 y 2 (4 x 2 – y 2 )
= 1/2. x 2 . y 2 .4 x 2 + 1/2. x 2 y 2 . (- y 2 )
= 2 x 4 y 2 - 1/2. x 2 y 4
\(a,\left(x^3+5x^2-2x+1\right)\left(x-7\right)\\ =x^4-7x^3+5x^3-35x^2-2x^2+14x+x-7\\ =x^4-2x^3-37x^2+15x-7\\ b,\left(2x^2-3xy+y^2\right)\left(x+y\right)\\ =2x^3+2x^2y-3x^2y-3xy^2+xy^2+y^3\\ =2x^3-x^2y-2xy^2+y^3\\ c,\left(x-2\right)\left(x^2-5x+1\right)-x\left(x^2+11\right)\\ =x^3-5x^2+x-2x^2+10x--x^3-11x\\ =x^3-7x^2\\ d,x\left(1-3x\right)\left(4-3x\right)-\left(x-4\right)\left(3x+5\right)\\ =x\left(4-15x+9x^2\right)-\left(3x^2-7x-20\right)\\ =4x-15x^2+9x^3-3x^2+7x+20\\ =9x^3-18x^2+11x+20\)
a) 2x.(3x2 – 5x + 3)
=2x3-10x2+6x
b(-2x-1).( x2 + 5x – 3 ) – (x-1)3
=-2x3 - 10x2 + 6x - x2 - 5x + 3 - x3 + 3x2 - 3x + 1
= -3x3 - 8x2 - 2x + 4
d) (6x5y2 – 9x4y3 + 15x3y4) : 3x3y2
=2x2-3xy+5y2
⇔
a) \(\left(x^5+4x^3-6x^2\right):4x^2\)
\(=\left(x^5:4x^2\right)+\left(4x^3:4x^2\right)+\left(-6x^2:4x^2\right)\)
\(=\dfrac{1}{4}x^3+x-\dfrac{3}{2}\)
b) x^3 + x^2 - 12 x-2 x^3 - 2x^2 3x^2 - 12 3x^2 - 6x 6x - 12 x^2+3x+6 6x - 12 0
Vậy \(\left(x^3+x^2-12\right):\left(x-2\right)=x^2+3x+6\)
c) (-2x5 : 2x2) + (3x2 : 2x2) + (-4x^3 : 2x^2)
= \(-x^3+\dfrac{3}{2}-2x\)
d) \(\left(x^3-64\right):\left(x^2+4x+16\right)\)
\(=\left(x-4\right)\left(x^2+4x+16\right):\left(x^2+4x+16\right)\)
\(=x-4\)
(dùng hẳng đẳng thức thứ 7)
Bài 2 :
a) 3x(x - 2) - 5x(1 - x) - 8(x2 - 3)
= 3x2 - 6x - 5x + 5x2 - 8x2 + 24
= (3x2 + 5x2 - 8x2) + (-6x - 5x) + 24
= -11x + 24
b) (x - y)(x2 + xy + y2) + 2y3
= x3 - y3 + 2y3
= x3 + y3
c) (x - y)2 + (x + y)2 - 2(x - y)(x + y)
= (x - y)2 - 2(x - y)(x + y) + (x + y)2
= [(x - y) + x + y)2 = [x - y + x + y] = (2x)2 = 4x2
Bài 1 :
a]= \(\frac{1}{4}\)x3 + x - \(\frac{3}{2}\).
b] => [x3 + x2 -12 ] = [ x2 +3 ][x-2] + [-6]
c]= -x3 -2x +\(\frac{3}{2}\).
d] = [ x3 - 64 ] = [ x2 + 4x + 16][ x- 4].
\(a,=10x^3-5x^2+5x\\ b,=x^3+27\\ c,=\dfrac{5}{2}xy-1-\dfrac{1}{2}y\\ d,=\left(2x^3-10x^2-11x^2+55x+12x-60\right):\left(x-5\right)\\ =\left[2x^2\left(x-5\right)-11x\left(x-5\right)+12\left(x-5\right)\right]:\left(x-5\right)\\ =2x^2-11x+12\)
a: \(=\dfrac{5}{3}x^2-x+\dfrac{1}{3}\)
b: \(=-5y-9+xy\)
b) \(\left(4x^2+4xy+y^2\right):\left(2x+y\right)=\dfrac{\left(2x+y\right)^2}{2x+y}=2x+y\)
c) \(\left(x^2-6xy+9y^2\right):\left(3y-x\right)=\dfrac{\left(3y-x\right)^2}{3y-x}=3y-x\)
(2x - 1)(x2 - 2xy + 3y2) = \(2x^3-4x^2y+6xy^2-x^2+2xy-3y^2\)