Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
7/1x5 + 7/5x9 + 7/9x13 + 7/13x17 + 7/17x21
Giải giùm mình nhé!
\(A=\frac{7}{1\cdot5}+\frac{7}{5\cdot9}+...+\frac{7}{17\cdot21}=\)
\(\frac{4}{7}A=\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+...+\frac{4}{17\cdot21}=\)
\(\frac{4}{7}A=\left(1-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{9}\right)+...+\left(\frac{1}{17}-\frac{1}{21}\right)=\)
\(\frac{4}{7}A=1-\frac{1}{21}=\)
\(\frac{4}{7}A=\frac{20}{21}\)
\(A=\frac{20}{21}\div\frac{4}{7}\)
\(A=\frac{20}{21}\times\frac{7}{4}=\frac{140}{84}=\frac{5}{3}\)
\(\frac{7}{1.5}+\frac{7}{5.9}+\frac{7}{9.13}+...+\frac{7}{17.21}\)
\(=\frac{7}{4}.\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{17.21}\right)\)
\(=\frac{7}{4}.\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{17}-\frac{1}{21}\right)\)
\(=\frac{7}{4}.\left(1-\frac{1}{21}\right)\)
\(=\frac{7}{4}.\frac{20}{21}=\frac{5}{3}\)
\(A=\frac{7}{1\cdot5}+\frac{7}{5\cdot9}+...+\frac{7}{17\cdot21}=\)
\(\frac{4}{7}A=\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+...+\frac{4}{17\cdot21}=\)
\(\frac{4}{7}A=\left(1-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{9}\right)+...+\left(\frac{1}{17}-\frac{1}{21}\right)=\)
\(\frac{4}{7}A=1-\frac{1}{21}=\)
\(\frac{4}{7}A=\frac{20}{21}\)
\(A=\frac{20}{21}\div\frac{4}{7}\)
\(A=\frac{20}{21}\times\frac{7}{4}=\frac{140}{84}=\frac{5}{3}\)
\(\frac{7}{1.5}+\frac{7}{5.9}+\frac{7}{9.13}+...+\frac{7}{17.21}\)
\(=\frac{7}{4}.\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{17.21}\right)\)
\(=\frac{7}{4}.\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{17}-\frac{1}{21}\right)\)
\(=\frac{7}{4}.\left(1-\frac{1}{21}\right)\)
\(=\frac{7}{4}.\frac{20}{21}=\frac{5}{3}\)