Tổng S= 5! + 32 có là số chính phương không? Vì sao?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=19^{2k}+5^{2k}+1995^{2k}+1996^{2k}\left(k\in N;k>0\right)\)
\(\Rightarrow M=\overline{.....1}+\overline{.....5}+\overline{.....5}+\overline{.....6}\)
\(\Rightarrow M=\overline{......7}\)
Vì \(M\) có chữ số tận cùng là chữ số \(7\)
Nên \(M\) không phải là số chính phương.
Số đó có tổng các chữ số là: \(2022\)mà \(2022\)chia hết cho \(3\)nên số đó chia hết cho \(3\).
\(2022\)không chia hết cho \(9\)nên số đó không chia hết cho \(9\).
Mà ta có số chính phương chia hết cho \(3\)thì chia hết cho \(9\).
Do đó số đã cho không là số chính phương.
a)Vì số tự nhiên có các chữ số tận cùng laf0;1;2;3;....;9.
Mà số chính phương bằng bình phương của các số tự nhiên
Số chính phương có các chữ số tận cùng là 0;1;4;5;9;6
b)không phải là số chính phương
Ta có: 2 + 4 + 6 +… + ( 2n ) = ( 2n + 2 ) . n : 2 = n ( n+1 )
Mà n . n < n ( n+1 ) < ( n + 1 )( n + 1 ) ⇒ n 2 < n ( n + 1 ) < n + 1 2
n 2 và n + 1 2 là số chính phương liên tiếp nên n ( n + 1 ) không thể là số chính phương. Ta có điều cần chứng minh.Ta có: 2 + 4 + 6 +… + ( 2n ) = ( 2n + 2 ) . n : 2 = n ( n+1 )
Mà n . n < n ( n+1 ) < ( n + 1 )( n + 1 ) ⇒ n 2 < n ( n + 1 ) < n + 1 2
n 2 và n + 1 2 là số chính phương liên tiếp nên n ( n + 1 ) không thể là số chính phương. Ta có điều cần chứng minh.
ta có 5! ko phai la so chinh phuong
32 la so chinh phuong
Tổng S= 5! + 32 không là số chính phương