Bài 6: Số a gồm 31 chữ số 1, số b gồm 28 chữ số 1, chứng minh a.b-1 chia hết cho 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta có tổng của các chữ số của a là 52 mà 52 không chia hết cho 3 nên a không chia hết cho 3
Ta có tổng của các chữ số của b là 104 mà 104 không chia hết cho 3 nên a không chia hết cho 3
Vậy a.b không chia hết cho 3.
b/ Ta có tổng của các chữ số trong a là 31 nên a chia cho 3 dư 1.
Tổng của các chữ số trong b là 38 nên b chia 3 dư 2
\(\Rightarrow a.b\)chia cho 3 dư 1.2 = 2.
Vậy (a.b - 2) chia cho 3 thì dư (2 - 2) = 0. Hay (a.b - 2) chia hết cho 3
Câu 1: a
tổng các chữ số của a=52 ( vì a gồm 52 số 1)
tg tự tổng các chữ số của b=104
1 số đc gọi là chia hết cho 3 khi tổng các chữ số của nó phải chia hết cho 3
Vì vậy a=52 mà 5+2=7 ; 7 không chia hết cho 3 =>a k chia hết cho 3
b=104 mà 1+0+4=5; 5 cũg k chia hết cho 3=>b k chia hết cho 3
tích của a.b là tích của 2 số k chia hết cho 3 nên k chia hết cho 3
b.
Do a gồm 31 chữ số 1 nên tổng các chữ số của a là 31 . 1 = 31 chia 3 dư 1
Do b gồm 38 chữ số 1 nên tổng các chữ số của b là 38 . 1 = 38 chia 3 dư 2
Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 3 => a chia 3 dư 1, b chia 3 dư 2
=> ab chia 3 dư 2
Mà 2 chia 3 dư 2
=> ab -2 chia hết cho 3
Vậy: ab - 2 chia hết cho 3 (đcpcm)
Do a gồm 31 chữ số 1 nên tổng các chữ số của a là :
31.1=31 chia 3 dư 1
Do b gồm 38 chữ số 1 nên tổng các chữ số của b là :
38.1=38 chia 3 dư 2
Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 3
⇔ a chia 3 dư 1; b chia 3 dư 2
⇔ ab chia 3 dư 2
⇔ ab - 2 chia hết cho 3
Vậy .............
Do a gồm 31 chữ số 1 nên tổng các chữ số của a là :
\(31.1=31\) chia 3 dư 1
Do b gồm 38 chữ số 1 nên tổng các chữ số của b là :
\(38.1=38\) chia 3 dư 2
Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 3
\(\Leftrightarrow\) a chia 3 dư 1; b chia 3 dư 2
\(\Leftrightarrow\) ab chia 3 dư 2
\(\Leftrightarrow\) ab - 2 chia hết cho 3
\(\Leftrightarrowđpcm\)
Vì số a gồm 31 chữ số 1 nên tổng các chữ số của a là 31
Mà 31 chia 3 dư 1
=> a chia 3 dư 1
=> a = 3m + 1
Vì số b gồm 38 chữ số 1 nên tổng các chữ số của a là 38
Mà 38 chia 3 dư 2
=> b chia 3 dư 2
=> b = 3n + 2
Khi đó:
ab - 2 = ( 3m + 1)( 3n + 2 ) = 9mn + 6m + 3n + 2 - 2 = 9mn + 6m + 3n
Ta thấy:
9mn \(⋮\) 3
6m \(⋮\) 3
3n \(⋮\) 3
=> 9mn + 6m + 3n \(⋮\) 3
hay ab - 2 chia hết cho 3
Đặt c = a-1; d = b-11 thì c,d cùng chia hết cho 3
a x b – 2 = (c+1) x (d+11) = cxd + d + c x 11 + 11 – 2
= c x d + d + c x 11 + 9
Vậy a x b – 2 chia hết cho 3.
Số có 31 chữ số 1 có tổng các chữ số là 31 chia 3 dư 1=>a chia 3 dư 1
Số có 38 chữ số 1 có tổng các chữ số là 38 chia 3 dư 2=>b chia 3 dư 2
=>ab chia 3 dư 2(bạn có thể chứng minh điều này nếu chư chắc chắn)
=>ab-2 chia hết cho 3(ĐPCM)
Số có 31 chữ số 1 có tổng các chữ số là 31 chia 3 dư 1 ----> a chia 3 dư 1
Số có 38 chữ số 1 có tổng các chữ số là 38 chia 3 dư 2 ----> a chia 3 dư 2
=> ab chia 3 dư 2
=> ab - 2 chia hết cho 3 ( ĐPCM )
đặt A0 = 11..0 (30 chữ số 1) => tổng các chữ số của A0 là 30 => A0 chia hết cho 3
đặt B00=11..00 (36 chữ số 1) thì ta cũng được B00 chia hết cho 3
a= A0 +1; b= B00+11
(ab-2) = (A0+1)(B00 +11) = A0.B00 +A0+B00 +11-2 chia hết cho 3( chứng minh xong)