K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2016

(5n-2)2-(2n-5)2=(5n-2-2n+5)(5n-2+2n-5)=(3n+3)(7n-7)=21(n+1)(n-1) luôn luôn chia hết cho 21

5 tháng 8 2019

(5n - 2)2 - (2n - 5)2

= 25n2 - 20n + 4 - 4n2 + 20n - 25

= 21n2 - 21

= 21(n2 - 1) \(⋮\) 21 (đpcm)

Mình nhanh nhất, chọn mình nha

3 tháng 3 2020

xét n ⋮ 2 => n(5n + 3) ⋮ 2

xét n không chia hết cho 2 => n = 2k + 1

=> n(5n + 3) = (2k + 1)[5(2k + 1) + 3)

= (2k + 1)(10k + 8) 

= 2(5k + 4)(2k + 1) ⋮ 2

vậy với mọi n nguyên thì n(5n + 3) ⋮ 2

3 tháng 3 2020

Đặt  A = n . (5n + 3 )

TH1 : n là số chẵn 

\(\Rightarrow\)n = 2k ( k \(\in Z\))

Khi đó ta có :  A = 2k . (5 . 2k +3 ) \(⋮2\)

TH2 : n là số lẻ 

\(\Rightarrow\)n = 2b + 1

Khi đó ta có : A = (2b + 1) . [ 5 .(2b + 1 ) + 3 ]

                      A = (2b+1) . ( 10b + 5 + 3 )

                      A = (2b + 1) . (10b + 8)

                      A = (2b + 1 ) . 2 . (5b + 4) \(⋮2\)

Vậy với   mọi n thuộc Z ta luôn có n .  (5n + 3 ) \(⋮2\)\(\rightarrowĐPCM\)

#HOK TỐT #

3 tháng 12 2018

bài 1:

\(\frac{2n^2+5n-1}{2n-1}=\frac{2n^2-n+6n-3+2}{2n-1}=\frac{n\left(2n-1\right)+3\left(2n-1\right)+2}{2n-1}=n+3+\frac{2}{2n-1}\)

Để \(2n^2+5n-1⋮2n-1\Leftrightarrow2n-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

<=>2n thuộc {2;0;3;-1}

<=>n thuộc {1;0;3/2;-1/2}

Mà n thuộc Z

=> n thuộc {1;0}

bài 2 sửa đề x5-5x3+4x

Ta có: \(x^5-5x^3+4x=x\left(x^4-5x^2+4\right)=x\left(x^4-x^2-4x^2+4\right)=x\left[x^2\left(x^2-1\right)-4\left(x^2-1\right)\right]\)

\(=x\left(x^2-4\right)\left(x^2-1\right)=x\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\)

Vì x(x-1)(x+1)(x+2)(x-2) là tích 5 số nguyên liên tiếp nên tích này chia hết cho 3,5,8

Mà (3,5,8)=1

=>\(x\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x-2\right)⋮3.5.8=120\)

=>đpcm

5 tháng 8 2019

a) (5n - 2)2 - (2n - 5)2

= (5n - 2 - 2n + 5) (5n - 2 + 2n - 5)

= (3n + 3) (7n - 7)

= 21n2 - 21n + 21n - 21

= 21n2 - 21 \(⋮\) 21

Vậy: 21n2 - 21 \(⋮\) 21 vs n \(\in\) Z

b) Gọi 2 số lẻ liên tiếp là 2x + 1 ; 2x + 3

Hiệu bình phương của 2 số lẻ liên tiếp là:

(2x + 1)2 - (2x + 3)2

= (2x + 1 - 2x - 3) (2x + 1 +2x + 3)

= -2.(4x + 4)

= -2.4(x + 1)

= -8(x + 1) \(⋮\) 8

Vậy: hiệu bình phương của 2 số lẻ liên tiếp \(⋮\) 8

5 tháng 8 2019

\(\left(2n+3\right)^2-\left(2n+1\right)^2=4n^2+12n+9-4n^2-4n-1=8n+8=8\left(n+1\right)⋮8\left(\text{đ}pcm\right)\)\(\left(5n-2\right)^2-\left(2n-5\right)^2=25n^2-20n+4-4n^2+20n-25=21n^2-21=21\left(n^2-1\right)⋮21\left(\text{đ}pcm\right)\)

19 tháng 2 2017

1, Ta có:\(\left(2n+7\right)⋮31\Rightarrow\left(2n+7\right)\inƯ\left(31\right)\)

\(\Leftrightarrow2n+7\in1;31\)

\(\Rightarrow n\in-3;12\)

Mà n là số tự nhiên nên n=12

Vậy n=12.

2,Ta có:n2+5n+5=n(n+5)+5

n(n+5) là tích của 2 số tự nhiên cách nhau 5 đơn vị nên tận cùng là 0,4,6.

Suy ra n(n+5)+5 tận cùng là 1;5;9.

Mà số chia hết cho 25 tận cùng là 25,50,75,00.

Nhưng trong các trường hợp trên thì trường hợp tận cùng là 5 cũng rất ít và nó càng không thể chia hết cho 25.

Vậy n2+5n+5 không chia hết cho 25.

16 tháng 7 2015

     n^2.(n+1) + 2n.(n+1)

=(n+1). (n^2 + 2n)

= (n+1).n.(n+2) chia hết cho 6 (tích 3 số tự nhiên liên tiếp chia hết cho 6)

16 tháng 7 2015

n2.(n + 1) + 2n.(n + 1) = (n2 + 2n)(n + 1) = n(n + 1)(n + 2)

Vì n(n + )(n + 2) là tích của 3 số nguyên liên tiếp nên có 1 số chia hết cho 2, 1 số chia hết cho 3.

=> Tích n(n + 1)(n + 2) chia hết cho 2 và 3.

Mà (2,3) = 1

=> n(n + 1)(n + 2) chia hết cho 6

=> n2.(n+1)+2n.(n+1) chia hết cho 6

28 tháng 7 2018

\(4x^3-36x=0\)

\(x.\left[\left(2x\right)^2-6^2\right]=0\)

\(x.\left(2x-6\right)\left(2x+6\right)=0\)

\(\Rightarrow\)\(\orbr{\begin{cases}x=0\\2x-6=0\end{cases}}\)hoặc \(2x+6=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)hoặc \(x=-3\)

KL:...............................................

tích mình với

ai tích mình

mình tích lại

thanks

8 tháng 10 2018

Ta có: \(\left(5n-2\right)^2-\left(2n-5\right)^2=\left(5n-2-2n+5\right).\left(5n-2+2n-5\right)\)

\(=\left(3n+3\right)\left(7n-7\right)=3\left(n+1\right).7\left(n-1\right)\)

\(=21\left(n^2-1\right)⋮21\) (điều phải chứng minh)