Tìm x, y biết: 20x^2+10y^2+24xy-24c+8y+52<0,=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)xy+3x-2y=11\)
\(\Leftrightarrow xy+3x-2y-6=5\)
\(\Leftrightarrow x\left(y+3\right)-2\left(y+3\right)=5\)
\(\Leftrightarrow\left(y+3\right)\left(x-2\right)=5\)
\(\Leftrightarrow\hept{\begin{cases}y+3=-1\\x-2=-5\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-4\\x=-3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y+3=1\\x-2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-2\\x=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y+3=-5\\x-2=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-8\\x=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y+3=5\\x-2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=2\\x=3\end{cases}}\)
\(b)2x^2-2xy+x-y=12\)
\(\Leftrightarrow2x\left(x-y\right)+\left(x-y\right)=12\)
\(\Leftrightarrow\left(x-y\right)\left(2x+1\right)=12\)
\(\Rightarrow\left(x-y\right);\left(2x+1\right)\inƯ\left(12\right)\)
\(\RightarrowƯ\left(12\right)\in\left\{-1;1;-2;2;-3;3;-4;4;-6;6;-12;12\right\}\)
Vì 2x+1 luôn lẻ
\(\Rightarrow2x+1\in\left\{-1;1;-3;3\right\}\)
\(\Leftrightarrow\hept{\begin{cases}2x+1=-1\\x-y=-12\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=11\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x+1=1\\x-y=12\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-12\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x+1=-3\\x-y=-4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x+1=3\\x-y=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}\)
\(\text{10.(2x+y)=2010}\)
\(\text{2x+y=201}\)
\(\text{ y le}\)
Vì yEN =>8y>=0.=>2^x<=52.Mà xEN =>2^xE{1;2;4;8;16;32}. Vì yEN =>8y chia hết cho 8.Mà 52 :8(dư 4). =>2^x=4.=>x=2.=>y=(52-2^2):8=6. Vậy x=2 ;y=6. tk nha.Có j kb.
\(x^2-2x+5+y^2-4y=0\)
\(x^2-2\times x\times1+1^2-1^2+y^2-2\times y\times2+2^2-2^2+5=0\)
\(\left(x-1\right)^2+\left(y-2\right)^2=0\)
\(\left(x-1\right)^2\ge0\)
\(\left(y-2\right)^2\ge0\)
\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)^2=\left(y-2\right)^2=0\)
\(\Leftrightarrow x-1=y-2=0\)
\(\Leftrightarrow x=1;y=2\)
\(x^2+4y^2+13-6x-8y=0\)
\(\Leftrightarrow x^2-6x+9+4y^2-8y+4=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(2y-2\right)^2=0\)
Dấu = xảy ra khi
\(\orbr{\begin{cases}x-3=0\\2y-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\y=1\end{cases}}\)
a/ \(x^2+2.10.x+10^2\)
b/ \(\left(4x\right)^2+2.4x.3y+\left(3y\right)^2\)
c/ \(y^2-2.7.y+7^2\) ( 7^2=49 )