so sanh :
351 và 534
5217 và 11972
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(5^{217}>5^{216}\)
Mà: \(5^{216}=5^{3\cdot72}=\left(5^3\right)^{72}=125^{72}\)
Lại có: \(125>119\Rightarrow125^{72}>119^{72}\)
\(\Rightarrow5^{216}>119^{72}\)
\(\Rightarrow5^{217}>119^{72}\)
a. \(5^{127}=5.5^{126}=5.125^{72}>119^{72}\)
\(\Rightarrow5^{217}>119^{72}\)
b. \(2^{1000}=\left(2^5\right)^{200}=32^{200}\)
\(5^{400}=\left(5^2\right)^{200}=25^{200}\)
\(\Rightarrow2^{1000}>5^{400}\)
c. \(9^{12}=\left(3^2\right)^{12}=3^{24}\)
\(27^7=\left(3^3\right)^7=3^{21}\)
\(\Rightarrow9^{12}>27^7\)
d. \(125^{80}=\left(5^3\right)^{80}=5^{240}\)
\(25^{118}=\left(5^2\right)^{118}=5^{236}\)
\(\Rightarrow125^{80}>25^{118}\)
e. \(5^{40}=\left(5^4\right)^{10}=625^{10}\)
\(\Rightarrow5^{40}>620^{10}\)
f. \(27^{11}=\left(3^3\right)^{11}=3^{33}\)
\(81^8=\left(3^4\right)^8=3^{32}\)
\(\Rightarrow27^{11}>81^8\)
\(1)\) \(3^x+3^{x+1}+3^{x+2}=351\)
\(\Leftrightarrow\)\(3^x.1+3^x.3+3^x.3^2=351\)
\(\Leftrightarrow\)\(3^x\left(1+3+3^2\right)=351\)
\(\Leftrightarrow\)\(3^x.13=351\)
\(\Leftrightarrow\)\(3^x=\frac{351}{13}\)
\(\Leftrightarrow\)\(3^x=27\)
\(\Leftrightarrow\)\(3^x=3^3\)
\(\Leftrightarrow\)\(x=3\)
Vậy \(x=3\)
Chúc bạn học tốt ~
\(2)\)
\(a)\) Ta có :
\(25^{15}=\left(5^2\right)^{15}=5^{2.15}=5^{30}\)
\(8^{10}.3^{30}=\left(2^3\right)^{10}.3^{30}=2^{30}.3^{30}=\left(2.3\right)^{30}=6^{30}\)
Vì \(5^{30}< 6^{30}\) nên \(25^{15}< 8^{10}.3^{30}\)
Vậy \(25^{15}< 8^{10}.3^{30}\)
\(b)\) Ta có :
\(\left(0,3\right)^{20}=\left[\left(0,3\right)^2\right]^{10}=\left(0,09\right)^{10}\)
Vì \(\left(0,1\right)^{10}>\left(0,09\right)^{10}\) nên \(\left(0,1\right)^{10}>\left(0,3\right)^{20}\)
Vậy \(\left(0,1\right)^{10}>\left(0,3\right)^{20}\)
Chúc bạn học tốt ~
`@` `\text {Answer}`
`\downarrow`
Ta có:
\(333^{444}=\left(333^4\right)^{111}=\left(3^4\cdot111^4\right)^{111}=\left(81\cdot111^4\right)^{111}=81^{111}\cdot111^{444}\) `(1)`
\(444^{333}=\left(444^3\right)^{111}=\left(4^3\cdot111^3\right)^{111}=\left(64\cdot111^3\right)=64^{111}\cdot111^{333}\) `(2)`
Vì \(81>64\), \(444>333\)
`=>`\(81^{111}>64^{111},\) \(111^{444}>111^{333}\) `(3)`
Từ `(1), (2)` và `(3)`
`=>`\(333^{444}>444^{333}\)
Tớ chỉ gợi ý thôi nha
Cậu thích làm cách nào thì làm 1 trong 2 thôi
Cách 1 : Quy đồng mẫu số
Cách 2 : Quy đồng tử số
N/X(nhận xét) : ta thấy 2001/2001x2002=1/1x2002=1/2002
2002/2002x2003=1/1x2003=1/2003
vì 1/2002>1/2003 suy ra 2001/2001x2002>2002/2002x2003 ( cứ so sánh = phần bù đi nhé , cậu mà ko bt phần bù là gì thì tớ lạy cậu luôn đấy )