Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=\frac{2000}{2001}+\frac{2001}{2002}\) và \(B=\frac{2000+2001}{2001+2002}\)
\(\Rightarrow B=\frac{2000}{2001+2002}+\frac{2001}{2001+2002}\)
Ta Xét:
\(\frac{2000}{2001}>\frac{2000}{2001+2002}\)
\(\frac{2001}{2002}>\frac{2001}{2001+2002}\)
\(\Rightarrow\frac{2000}{2001}+\frac{2001}{2002}>\frac{2000}{2001+2002}+\frac{2001}{2001+2002}\)
\(\Rightarrow A>B\)
\(B=\frac{2000+2001}{2001+2002}=\frac{2000}{2001+2002}+\frac{2001}{2001+2002}
\(\dfrac{2001.2002+1981+2003.21}{2002.2003-2001.2002}\)
\(=\dfrac{2001.2002+1981+\left(2002+1\right).21}{2002.\left(2003-2001\right)}\)
\(=\dfrac{2001.2002+1981+21+2002.21}{2002.2}\)
\(=\dfrac{2001.2002+2002+2002.21}{2002.2}\)
\(=\dfrac{2002\left(2001+1+21\right)}{2002.2}=\dfrac{2023}{2}\)
Ta có:\(B=\frac{2000}{2001+2002}+\frac{2001}{2001-2002}\)
Vì:\(\frac{2000}{2001}>\frac{2000}{2001+2002}\)
\(\frac{2001}{2002}>\frac{2001}{2001+2002}\)
\(\Rightarrow\left(\frac{2000}{2001}+\frac{2001}{2002}\right)>\left(\frac{2000}{2001-2002}-\frac{2001}{2001+2001}\right)\)
\(\Rightarrow A>B\)
Ta có: 2000/2001>1/2 ; 2001/2002>1/2
=>A=1/2+1/2=1=>A>1
B=2000+2001/2001+2002=4001/4003<1
A>1;B<1
=>A>B
Vậy A>B
$B=\frac{2000}{2001+2002}+\frac{2001}{2001-2002}$B=20002001+2002 +20012001−2002
Vì:
19992002+1/19992001 +1<19992002+1+1998/19992001+1+1998
=19992002+1999/19992001+1999
=1999(19992001+1)/1999 .(19992000+1)
=19992001+1/19992000+1=B(vì bạn không có tên cho phân sô nên mình đặt tạm dỡ phải dài dòng)
vật hai phân sô này =nhau
Ta có:
\(\frac{2001.2002+2003.21+1981}{2002.2003-2001.2002}=\frac{2001.2002+2002.21+21+1981}{2002.\left(2003-2001\right)}\)
=\(\frac{2002.\left(2001+21\right)+2002}{2002.2}=\frac{2002.2022+2002}{2002.2}\)
=\(\frac{2002.\left(2022+1\right)}{2002.2}=\frac{2002.2023}{2002.2}\)
=\(\frac{2023}{2}\)
Ta có: 2000/2001>1/2 ; 2001/2002>1/2
=>A=1/2+1/2=1=>A>1
B=2000+2001/2001+2002=4001/4003<1
A>1;B<1
=>A>B
Vậy A>B
Theo mình nghĩ là :
B = \(\frac{2000}{2001+2002}\)+ \(\frac{2001}{2001+2002}\)
Mà \(\frac{2000}{2001+2002}=\frac{2000}{4003}\)< \(\frac{2000}{2001}\)
\(\frac{2001}{2001+2002}\)= \(\frac{2001}{4003}\)< \(\frac{2001}{2002}\)
Nên : A > B
Không chắc nữa !!!
Xét B=2000+2001/2001+2002
B=2000/2001+2002 + 2001/2001+2002
Rồi bạn so sánh 2 phân số cùng tử của B với A rồi cho kết quả là A>B
N/X(nhận xét) : ta thấy 2001/2001x2002=1/1x2002=1/2002
2002/2002x2003=1/1x2003=1/2003
vì 1/2002>1/2003 suy ra 2001/2001x2002>2002/2002x2003 ( cứ so sánh = phần bù đi nhé , cậu mà ko bt phần bù là gì thì tớ lạy cậu luôn đấy )