K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét tứ giác DKMI có 

\(\widehat{DKM}\) và \(\widehat{DIM}\) là hai góc đối

\(\widehat{DKM}+\widehat{DIM}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: DKMI là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

 

13 tháng 3 2020

Đáp án:

Giải thích các bước giải:

1. Xét tứ giác CEHD có :

CEH = 90 ( BE là đường cao )

CDH = 90 ( AD là đường cao )

⇒ CEH + CDH = 90 + 90 = 180

Mà CEH và CDH là hai góc đối của tứ giác CEHD

⇒ CEHD là tứ giác nội tiếp (đpcm)

2. BE là đường cao ( gt )

⇒ BE ⊥ AB ⇒ BFC = 90

Như vậy E và F cùng nhìn BC dưới một góc 90 ⇒ E và F cùng nằm trên (O) đường kính AB

⇒ 4 điểm B, C, E, F cùng nằm trên một đường tròn (đpcm)

3. Xét ΔAEH và ΔADC có :

AEH = ADC (=90)

A chung

⇒ ΔAEH ~ ΔADC

⇒ AE/AD = AH/AC

⇒ AE.AC = AH.AD

Xét ΔBEC và ΔADC có :

BEC = ADC (=90)

C chung

⇒ ΔBEC ~ ΔADC

⇒ AE/AD = BC/AC

⇒ AD.BC = BE.AC (đpcm)

4. Có : C1 = A1 (cùng phụ góc ABC)

C2 = A1 ( hai góc nối tiếp chắn cung BM )

⇒ C1 = C2 ⇒ CB là tia phân giác HCM

Lại có : CB ⊥ HM

⇒ Δ CHM cân tại C

⇒ CB là đường trung trực của HM

⇒ H và M đối xứng nhau qua BC (đpcm)

5. Có : Bốn điểm B,C,E,F cùng nằm trên một đường tròn ( câu 2 )

⇒ C1 = E1 (hai góc nội tiếp cùng chắn BF) (*)

Có : Tứ giác CEHD nội tiếp (câu 1)

⇒ C1 = E2 (hai góc nội tiếp cùng chắn cung HD ) (**)

Từ (*) và (**) ta suy ra :

E1 = E2

⇒ EB là tia phân giác DEF

Cm tương tự ta được : FC là tia phân giác của DFE

Mà BE và CF cắt nhau tại H

⇒ H là tâm của đường tròn nội tiếp ΔDEF

a: Xét tứ giác DMHN có \(\widehat{DMH}+\widehat{DNH}=90^0+90^0=180^0\)

nên DMHN là tứ giác nội tiếp

Xét tứ giác DMKE có \(\widehat{DME}=\widehat{DKE}=90^0\)

nên DMKE là tứ giác nội tiếp

b: Xét (O) có

\(\widehat{DFE}\) là góc nội tiếp chắn cung DE

\(\widehat{DSE}\) là góc nội tiếp chắn cung DE

Do đó: \(\widehat{DFE}=\widehat{DSE}\)

Xét (O) có

ΔDES nội tiếp

DS là đường kính

Do đó: ΔDES vuông tại E

Xét ΔDES vuông tại E và ΔDKF vuông tại K có

\(\widehat{DSE}=\widehat{DFK}\)

Do đó: ΔDES đồng dạng với ΔDKF

c: Kẻ tiếp tuyến Fx của (O)

Xét (O) có

\(\widehat{xFE}\) là góc tạo bởi tiếp tuyến Fx và dây cung FE

\(\widehat{EDM}\) là góc nội tiếp chắn cung EF

Do đó: \(\widehat{xFE}=\widehat{EDM}\)

mà \(\widehat{EDM}=\widehat{MKF}\left(=180^0-\widehat{MKE}\right)\)

nên \(\widehat{xFE}=\widehat{MFK}\)

mà hai góc này là hai góc ở vị trí so le trong

nên MK//Fx

Ta có: MK//Fx

OF\(\perp\)Fx

Do đó: OF\(\perp\)MK

7 tháng 6 2021

a) đề khúc sau là \(MK.MF=MB.MC\)

Ta có: \(\angle BKC=\angle BFC=90\Rightarrow BKFC\) nội tiếp

\(\Rightarrow\angle MKB=\angle MCF\)

Xét \(\Delta MKB\) và \(\Delta MCF:\) Ta có: \(\left\{{}\begin{matrix}\angle MKB=\angle MCF\\\angle CMFchung\end{matrix}\right.\)

\(\Rightarrow\Delta MKB\sim\Delta MCF\left(g-g\right)\Rightarrow\dfrac{MK}{MC}=\dfrac{MB}{MF}\Rightarrow MK.MF=MB.MC\)

b) Xét \(\Delta MNB\) và \(\Delta MCA:\) Ta có: \(\left\{{}\begin{matrix}\angle MNB=\angle MCA\left(ANBCnt\right)\\\angle CMAchung\end{matrix}\right.\)

\(\Rightarrow\Delta MNB\sim\Delta MCA\left(g-g\right)\Rightarrow\dfrac{MN}{MC}=\dfrac{MB}{MA}\Rightarrow MN.MA=MB.MC\)

mà \(MK.MF=MB.MC\Rightarrow MK.MF=MA.MN\Rightarrow\dfrac{MK}{MA}=\dfrac{MN}{MF}\)

Xét \(\Delta MKN\) và \(\Delta MAF:\) Ta có: \(\left\{{}\begin{matrix}\dfrac{MK}{MA}=\dfrac{MN}{MF}\\\angle AMFchung\end{matrix}\right.\)

\(\Rightarrow\Delta MKN\sim\Delta MAF\left(c-g-c\right)\Rightarrow\angle MNK=\angle MFA\)

\(\Rightarrow ANKF\) nội tiếp \(\Rightarrow\angle AKN=\angle AFN\)undefined

7 tháng 6 2021

thank nha :33333

 

a: góc AEB=góc ADB=90 độ

=>ABDE nội tiếp

b: góc CBK=1/2*180=90 độ

Xet ΔCBK vuông tại B và ΔCFA vuông tại F có

góc BCK=góc FCA

=>ΔCBK đồng dạng vơi ΔCFA

=>CB/CF=CK/CA

=>CB*CA=CF*CK

31 tháng 12 2023

a: Xét tứ giác ADHK có

\(\widehat{ADH}+\widehat{AKH}=90^0+90^0=180^0\)

=>ADHK là tứ giác nội tiếp

Xét tứ giác BDKC có \(\widehat{BDC}=\widehat{BKC}=90^0\)

nên BDKC là tứ giác nội tiếp

b: Xét (O) có

\(\widehat{xAC}\) là góc tạo bởi tiếp tuyến Ax và dây cung AC

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{xAC}=\widehat{ABC}\)

mà \(\widehat{ABC}=\widehat{AKD}\left(=180^0-\widehat{DKC}\right)\)

nên \(\widehat{xAC}=\widehat{AKD}\)

mà hai góc này là hai góc ở vị trí đồng vị

nên Ax//DK

c: Xét ΔABC có

BK,CD là các đường cao

BK cắt CD tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC tại M

Xét tứ giác HKCM có \(\widehat{HKC}+\widehat{HMC}=90^0+90^0=180^0\)

nên HKCM là tứ giác nội tiếp

=>\(\widehat{HKM}=\widehat{HCM}\)

mà \(\widehat{HCM}=\widehat{BAM}\left(=90^0-\widehat{ABM}\right)\)

nên \(\widehat{HKM}=\widehat{BAM}\)

mà \(\widehat{BAM}=\widehat{DKB}\)(ADHK là tứ giác nội tiếp)

nên \(\widehat{DKH}=\widehat{MKH}\)

=>\(\widehat{DKB}=\widehat{MKB}\)

=>KB là phân giác của góc DKM

a: Xét tứ giác ADHK có

ˆADH+ˆAKH=900+900=1800���^+���^=900+900=1800

=>ADHK là tứ giác nội tiếp

Xét tứ giác BDKC có ˆBDC=ˆBKC=900���^=���^=900

nên BDKC là tứ giác nội tiếp

b: Xét (O) có

ˆxAC���^ là góc tạo bởi tiếp tuyến Ax và dây cung AC

ˆABC���^ là góc nội tiếp chắn cung AC

Do đó: ˆxAC=ˆABC���^=���^

mà ˆABC=ˆAKD(=1800−ˆDKC)���^=���^(=1800−���^)

nên ˆxAC=ˆAKD���^=���^

mà hai góc này là hai góc ở vị trí đồng vị

nên Ax//DK

c: Xét ΔABC có

BK,CD là các đường cao

BK cắt CD tại H

Do đó: H là trực tâm của ΔABC

=>AH⊥⊥BC tại M

Xét tứ giác HKCM có ˆHKC+ˆHMC=900+900=1800���^+���^=900+900=1800

nên HKCM là tứ giác nội tiếp

=>ˆHKM=ˆHCM���^=���^

mà ˆHCM=ˆBAM(=900−ˆABM)���^=���^(=900−���^)

nên ˆHKM=ˆBAM���^=���^

mà ˆBAM=ˆDKB���^=���^(ADHK là tứ giác nội tiếp)

nên ˆDKH=ˆMKH���^=���^

=>ˆDKB=ˆMKB���^=���^

=>KB là phân giác của góc DKM

16 tháng 2 2023

A C H P I B M K O (hình minh họa)

Xét tứ giác AIHK:

\(\widehat{AIH}+\widehat{AKH}=90^o+90^o=180^o\)

\(\Rightarrow\) Tứ giác AIHK nội tiếp

Xét \(\Delta MIB\) và \(\Delta MCK\):

\(\widehat{IMC}\) chung

\(\widehat{MBI}=\widehat{MKC}\)

\(\Rightarrow\Delta MIB~\Delta MCK\left(g.g\right)\)

\(\Rightarrow\dfrac{MI}{MB}=\dfrac{MC}{MK}\)

\(\Leftrightarrow MI.MK=MC.MB\)

\(\widehat{IMP}=\dfrac{1}{2}\widehat{IMB}\)

\(\widehat{IAP}=\dfrac{1}{2}\widehat{IAK}\)

\(\Rightarrow\widehat{APM}=180^o-\dfrac{1}{2}\left(\widehat{IMB}+\widehat{IAK}\right)=180^o-\dfrac{1}{2}.180^o=90^o\)

\(\Rightarrow AP\perp MP\).