K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2016

\(P=\left(1-\frac{2}{2.3}\right).\left(1-\frac{2}{3.4}\right).\left(1-\frac{2}{4.5}\right)...\left(1-\frac{2}{99.100}\right)\)

\(P=\frac{4}{2.3}.\frac{10}{3.4}.\frac{18}{4.5}...\frac{9898}{99.100}\)

\(P=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}...\frac{98.101}{99.100}\)

\(P=\frac{1.2.3...98}{2.3.4...99}.\frac{4.5.6...101}{3.4.5...100}\)

\(P=\frac{1}{99}.\frac{101}{3}=\frac{101}{297}\)

31 tháng 10 2021

cái này còn dễ hơn nữa

31 tháng 10 2021

\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=\dfrac{1}{2}-\dfrac{1}{100}=\dfrac{49}{100}\)

11 tháng 3 2016

\(=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)

11 tháng 3 2016

\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow\frac{1}{2}-0+0+...+0-\frac{1}{100}\)

\(\Rightarrow\frac{50}{100}-\frac{1}{100}=\frac{49}{100}\)

19 tháng 6 2021

   \(\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+...+\frac{1}{99x100}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{2}-\frac{1}{100}\)

\(=\frac{49}{100}\)

11 tháng 3 2017

A = \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{100}\)\(\frac{1}{100}\)

A = \(1-\frac{1}{100}\)

A = \(\frac{100}{100}-\frac{1}{100}\)

A = \(\frac{99}{100}\)

11 tháng 3 2017

\(A=\frac{1}{1x2}+\frac{1}{2x3}+\frac{ 1}{3x4}+...+\frac{1}{99x100}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

\(A=\frac{99}{100}\)

11 tháng 3 2017

A=2(\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\))=2(\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\))

=> A=2(\(\frac{1}{1}-\frac{1}{100}\))=2.\(\frac{99}{100}=\frac{99}{50}\)

ĐS: A=99/50

\(\frac{2}{1\times2}+\frac{2}{2\times3}+\frac{2}{3\times4}+\frac{2}{4\times5}+...+\frac{2}{99\times100}\)

\(=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{99\times100}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{1}-\frac{1}{100}\)

\(=\frac{99}{100}\)

26 tháng 7 2017

Đặt \(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(\Leftrightarrow A=\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{5}\right)+...+\left(\frac{1}{99}-\frac{1}{100}\right)\)

\(\Leftrightarrow A=\frac{1}{2}-\frac{1}{100}\)

\(\Leftrightarrow A=\frac{49}{100}\)

26 tháng 7 2017

\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{99.100}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{2}-\frac{1}{100}\)

\(=\frac{49}{100}\)

10 tháng 4 2015

\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+....+\frac{1}{99\times100}\)

\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\frac{1}{1}-\frac{1}{100}\)

\(\frac{100-1}{100}\)

\(\frac{99}{100}\)

13 tháng 8 2016

\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{99\times100}\)
\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\frac{1}{1}-\frac{1}{100}\)
\(\frac{100-1}{100}\)
\(\frac{99}{100}\)