K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

S ABC=1/2*AH*BC=1/2*4*5=10cm2

a: AD là phân giác

=>BD/AB=CD/AC

=>BD/6=3/9=1/3

=>BD=2cm

b: \(S_{ABC}=\dfrac{1}{2}\cdot3\cdot\left(2+3\right)=\dfrac{3}{2}\cdot5=\dfrac{15}{2}\left(cm^2\right)\)

DD
26 tháng 12 2022

a) \(IK\) là đường trung bình của tam giác \(ABC\) nên \(IK=\dfrac{BC}{2}=6\left(cm\right)\).

b) \(S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}.5.12=30\left(cm^2\right)\)

26 tháng 3 2021

Thiếu hết 1 điều kiện em ơi! Xem lại đề giùm

26 tháng 2 2021

A B C H

a) Xét t/giác ABH vuông tại H , ta có: AB2 = AH2 + BH2 (Pi - ta - go)

=> AB2 = 122 + 52 = 169 => AB = 13 (cm)

Ta có: HC + BH = BC => HC = BC - BH = 14 - 5 = 9 (cm)

Xét t/giác AHC vuông tại H, có: AC2 = HC2 + AH2 (Pi - ta - go)

=> AC2  = 92 +  122 = 225 => AC = 15 (cm)

 

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow AB^2=12^2+5^2=169\)

hay AB=13(cm)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên CH=BC-BH=14-5=9(cm)

Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:

\(AC^2=AH^2+HC^2\)

\(\Leftrightarrow AC^2=12^2+9^2=225\)

hay AC=15(cm)

Vậy: AB=13cm; AC=15cm

21 tháng 10 2021

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

c: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot4.5}{2}=3\cdot4.5=13.5\left(cm^2\right)\)

16 tháng 1 2022

vì Δ ABC có AH \(\perp\)BC ( H thuộc BC)nên AH là đường cao của  Δ ABC

=>\(S_{ABC}=\dfrac{1}{2}.AH.BC=\dfrac{1}{2}.5.4=10cm^2\)

16 tháng 1 2022

= 10 c m 2

26 tháng 2 2022

Xét tam giác vuông AHB có:

\(AH^2+BH^2=AB^2\\ 12^2+BH^2=20^2\\ BH^2=256\\ BH=16cm\)

\(=>BC=BH+CH=5+16=21cm\)

Xét tam giác AHC vuông tại H có:

\(AH^2+CH^2=AC^2\\ =>12^2+5^2=AC^2\\ =>AC^2=169\\ AC=13cm\)